首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dung fungi, such as Sordaria fimicola, generally reproduce sexually with ascospores discharged from mammalian dung after passage through herbivores. Their life cycle is thought to be obligate to dung, and thus their ascospores in Quaternary sediments have been interpreted as evidence of past mammalian herbivore activity. Reports of dung fungi as endophytes would seem to challenge the view that they are obligate to dung. However, endophyte status is controversial because surface-sterilization protocols could fail to kill dung fungus ascospores stuck to the plant surface. Thus, we first tested the ability of representative isolates of three common genera of dung fungi to affect plant growth and fecundity given that significant effects on plant fitness could not result from ascospores merely stuck to the plant surface. Isolates of S. fimicola, Preussia sp., and Sporormiella sp. reduced growth and fecundity of two of three populations of Bromus tectorum, the host from which they had been isolated. In further work with S. fimicola we showed that inoculations of roots of B. tectorum led to some colonization of aboveground tissues. The same isolate of S. fimicola reproduced sexually on inoculated host plant tissues as well as in dung after passage through sheep, thus demonstrating a facultative rather than an obligate life cycle. Finally, plants inoculated with S. fimicola were not preferred by sheep; preference had been expected if the fungus were obligate to dung. Overall, these findings make us question the assumption that these fungi are obligate to dung.  相似文献   

2.
《Acta Oecologica》2006,29(2):214-220
At low altitudes, the interactions between root and shoot competition on plant growth have been extensively studied, and such interaction effects were found to be positive, negative, or neutral. However, little is known about such effects at high altitudes where the environmental conditions are harsher than those at low altitudes. We carried out a field experiment in an alpine meadow in the northeast Tibetan Plateau to test the hypothesis that a negative interaction between root and shoot competition exists for alpine plant species. Root and shoot competition were experimentally manipulated in the four grass species (Kobresia humilis, Saussurea superba, Stipa aliena and Elymus nutans). We found that K. humilis and S. aliena grew better without competition, whereas S. superba grew better with shoot competition and E. nutans grew better with root competition. The interactions between root and shoot competition were negative in K. humilis, positive in S. superba, but neutral in S. aliena and E. nutans, suggesting that the interaction effects are species-specific. This study also suggested that alpine plants may trade off both plant–plant interactions and competition shift between root and shoot to adapt to stressful environments.  相似文献   

3.
Ecosystem-engineering plants modify the physical environment and can increase species diversity and exotic species invasion. At the individual level, the effects of ecosystem engineers on other plants often become more positive in stressful environments. In this study, we investigated whether the community-level effects of ecosystem engineers also become stronger in more stressful environments. Using comparative and experimental approaches, we assessed the ability of a native shrub (Ericameria ericoides) to act as an ecosystem engineer across a stress gradient in a coastal dune in northern California, USA. We found increased coarse organic matter and lower wind speeds within shrub patches. Growth of a dominant invasive grass (Bromus diandrus) was facilitated both by aboveground shrub biomass and by growing in soil taken from shrub patches. Experimental removal of shrubs negatively affected species most associated with shrubs and positively affected species most often found outside of shrubs. Counter to the stress-gradient hypothesis, the effects of shrubs on the physical environment and individual plant growth did not increase across the established stress gradient at this site. At the community level, shrub patches increased beta diversity, and contained greater rarified richness and exotic plant cover than shrub-free patches. Shrub effects on rarified richness increased with environmental stress, but effects on exotic cover and beta diversity did not. Our study provides evidence for the community-level effects of shrubs as ecosystem engineers in this system, but shows that these effects do not necessarily become stronger in more stressful environments.  相似文献   

4.
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.  相似文献   

5.
Sinorhizobium meliloti can form a nitrogen-fixing symbiotic relationship with alfalfa after bacteria in the soil infect emerging root hairs of the growing plant. To be successful at this, the bacteria must be able to survive in the soil between periods of active plant growth, including when conditions are dry. The ability of S. meliloti to withstand desiccation has been known for years, but genes that contribute to this phenotype have not been identified. Transposon mutagenesis was used in combination with novel screening techniques to identify four desiccation-sensitive mutants of S. meliloti Rm1021. DNA sequencing of the transposon insertion sites identified three genes with regulatory functions (relA, rpoE2, and hpr) and a DNA repair gene (uvrC). Various phenotypes of the mutants were determined, including their behavior on several indicator media and in symbiosis. All of the mutants formed an effective symbiosis with alfalfa. To test the hypothesis that UvrC-related excision repair was important in desiccation resistance, uvrA, uvrB, and uvrC deletion mutants were also constructed. These strains were sensitive to DNA damage induced by UV light and 4-NQO and were also desiccation sensitive. These data indicate that uvr gene-mediated DNA repair and the regulation of stress-induced pathways are important for desiccation resistance.  相似文献   

6.
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic β-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.  相似文献   

7.
Summary The effect of vesicular-arbuscular mycorrhiza (VAM) on the fecundity ofVulpia ciliata ssp.ambigua was investigated at two field sites in eastern England by applying the fungicide benomyl to reduce VAM infection. The application of benomyl at the two sites produced very different results. At one site the application of the fungicide reduced the fecundity of plants whereas at the other fecundity was increased. At the first site the reduction in fecundity was linked to a significant reduction in VAM infection on the sprayed plants. The mechanism of the benefit associated with the VAM infection is however unclear: there was no treatment effect on morphology or on phosphorus inflow. At the second site, where fecundity was increased, there was only a negligible amount of VAM infection amongst the unsprayed plants and it is suggested that the increase in fecundity with the application of benomyl may have resulted from a reduction in infection by other, presumably pathogenic, fungi. The value of VAM fungi to the host plant may therefore not be restricted to physiological benefits. They may also provide protection to the plant by competing for space with other species of pathogenic fungi.  相似文献   

8.
Herbivores are pervasive, yet their effects on plant fecundity are often variable. One potential source of variation in herbivore impacts results from differing feeding modes of herbivores. We examined the relative importance of inflorescence-feeding insects versus large ungulates in affecting the fecundity of Balsamorhiza sagittata (Asteraceae), a dominant native perennial forb in western Montana, USA. We quantified these effects across four sites that varied in elevation to determine how consistent herbivore impacts were across these divergent sites. Insect herbivores were present in flower heads at all sites but they significantly depressed plant fecundity at two of the four sites. At the two sites where herbivore suppression had significant effects, this treatment let to 1.6 and 3.4-fold increases in seed production, respectively. In contrast, across all sites ungulates had minimal impacts on balsamroot flower and seed production. Seed addition experiments revealed that at some sites and in some years B. sagittata is seed-limited, as there was a positive relationship between seed input and seedling recruitment. Thus, reductions in seed production from heavy insect herbivory may limit balsamroot recruitment in some locations. Overall, results show that inconspicuous insects have stronger effects on balsamroot fecundity than do mammalian herbivores, but the magnitude of negative impacts at both the individual and population-level vary by site.  相似文献   

9.
Litter decomposition is a key ecosystem process which returns nutrients from dead plant material to mineral forms in the soil. We examined whether systemic fungal endophytes modulate recycling of nutrients directly by altering litter decomposition. We studied litter decomposition mediated by Epichloë endophytes in litter-bag experiments. We examined direct endophyte effects on litter decomposition in wild populations and cultivars of Schedonorus phoenix and Schedonorus pratensis. In the first experiment, endophyte presence tended to increase litter decomposition rate in cultivars of the two grass species (S. phoenix and S. pratensis). However, in the second experiment plant origin had a stronger influence than endophyte symbiosis in S. phoenix. Interestingly, the initial level of alkaloids was associated positively with decomposition in S. phoenix populations. Characteristics associated with litter quality were not clearly related to either endophytes or decomposition rate. Our results suggest that endophytes can enhance litter breakdown but their role in nutrient cycling is far more complex depending on plant population origin.  相似文献   

10.
Weather is a general stochastic influence on the life history of weeds. In contrast, anthropogenic disturbance (e.g. land use) is an important deterministic influence on weed demography. Our aim with this study was to investigate the relative contributions of land use and weather on the demography of Lantana camara (lantana), a weed of agricultural and natural habitats, based on the intensive monitoring of lantana populations under three land uses (viz. farm[pasture], and burnt and grazed forests) in subtropical Australia. Lantana populations were growing vigorously across all land uses (asymptotic population growth rate, λ > 3). Examination of historical demography using retrospective perturbation analyses showed that weather was a strong influence on lantana demography with the transition from an El Niño (2008–09) to a La Niña (2009–10) year having a strong positive effect on population growth rate. This effect was most marked at the grazed site, and to a lesser extent at the burnt site, with seedling-to-juvenile and juvenile-to-adult transitions contributing most to these effects. This is likely the result of burning and grazing having eliminated/reduced interspecific competition at these sites. Prospective perturbation analyses revealed that λ was most sensitive to proportionate changes in growth transitions, followed by fecundity and survival transitions. Examination of context-specific patterns in elasticity revealed that growth and fecundity transitions are likely to be the more critical vital rates to reduce λ in wet years at the burnt and grazed forest sites, compared to the farm/pasture site. Management of lantana may need to limit the transition of juveniles into the adult stages, especially in sites where lantana is free from competition (e.g. in the presence of fire or grazing), and this particularly needs to be achieved in wet years. Collectively, these results shed light on aspects of spatial and temporal variation in the demography of lantana, and offer insights on its context-specific management.  相似文献   

11.
We studied the effect of three Pandora neoaphidis isolates from one Sitobion avenae population, three temperatures, and two aphid species namely S. avenae and Rhopalosiphum padi on (i) aphid mortality, (ii) time needed to kill aphids, and (iii) aphid average daily and lifetime fecundity. A total of 38% of S. avenae and 7% of R. padi died and supported fungus sporulation. S. avenae was killed 30% faster than R. padi. Average daily fecundity was negatively affected only in S. avenae inoculated with, but not killed by, P. neoaphidis. Nevertheless, lifetime fecundity of both aphid species inoculated and sporulating with P. neoaphidis was halved compared to lifetime fecundity of surviving aphids in the control. Increased temperature resulted in higher mortality rates but did not consistently affect lethal time or fecundity. Results suggest that (i) temperature effects on virulence differ between isolates, even when obtained within the same host population, and (ii) even though an isolate does not kill a host it may reduce its fecundity. Our findings are important for the understanding of P. neoaphidis epizootiology and for use in pest-natural enemy modelling.  相似文献   

12.
Initial studies of grass–endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky‐31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host‐grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus–E. coenophiala. We investigated the generality of previous work on vertically transmitted Epichloë‐associated grass invasiveness by studying a pair of very closely related species: S. pratensis and E. uncinata. Seven cultivars of S. pratensis and two cultivars of S. arundinaceus that were developed with high‐ or low‐endophyte infection rate were broadcast seeded into 2 × 2‐m plots in a tilled, old‐field grassland community in a completely randomized block design. Schedonorus abundance, endophyte infection rate, and co‐occurring vegetation were sampled 3, 4, 5, and 6 years after establishment, and the aboveground invertebrate community was sampled in S. pratensis plots 3 and 4 years after establishment. Endophyte infection did not enable the host grass to achieve high abundance in the plant community. Contrary to expectations, high‐endophyte S. pratensis increased plant richness relative to low‐endophyte cultivars. However, as expected, high‐endophyte S. pratensis marginally decreased invertebrate taxon richness. Endophyte effects on vegetation and invertebrate community composition were inconsistent among cultivars and were weaker than temporal effects. The effect of the grass–Epichloë symbiosis on diversity is not generalizable, but rather specific to species, cultivar, infection, and potentially site. Examining grass–endophyte systems using multiple cultivars and species replicated among sites will be important to determine the range of conditions in which endophyte associations benefit host grass performance and have subsequent effects on co‐occurring biotic communities.  相似文献   

13.
Yu  Zhenxing  Xu  Jing  Liu  Shijun  Hu  Liangliang  Ren  Minglei  Liu  Yu  Tang  Jianjun  Chen  Xin 《Plant and Soil》2020,447(1-2):333-345
Aims

We tested the hypothesis that adult plants can help their conspecific (i.e. an organism belonging to the same species as another organism) seedlings develop symbiosis with arbuscular mycorrhizal fungi (AMF), thereby increasing seedling nutrient uptake and growth in a saline soil.

Methods

Using the halophytic shrub Tamarix chinensis as a model plant, we conducted two field experiments and a greenhouse experiment. Field experiment 1 assessed the importance of below-ground effects of adult neighbor. Field experiment 2 determined the involvement of AMF in neighbor effects by applying fungicide benomyl to obtain AMF suppressed treatment. The greenhouse experiment tested whether neighbor effects were influenced by AMF hyphal connection between adults and seedlings by using 25 μm and 0.45 μm nylon mesh to allow and prevent the AMF hyphae pass through respectively.

Results

Adult neighbor increased shoot biomass and nutrient of target seedlings and the below-ground effects mediated by AMF was facilitative under high soil salinity level. Field experiment 1 showed that adult neighbors reduced soil salinity, increased soil organic matter, and provided AMF spores for target seedlings via whole plant effects or below-ground effects alone. Field experiment 2 showed that shoot biomass and AMF colonization of target seedlings were greater with an adult neighbor when AMF were not suppressed treatment than in AMF were suppressed or there were no neighbors. In the greenhouse experiment, adult neighbors with AMF hyphal connection increased shoot biomass, AMF colonization, and 15N content of target seedlings under the high salinity level.

Conclusion

The results support our hypothesis that adult plants can promote the growth and nutrient uptake of their conspecific seedlings in a saline soil by helping them to develop AMF symbiosis. These findings highlight the roles of adult neighbor plants on seedlings regeneration through rhizospheric symbiosis in stressful environments.

  相似文献   

14.
Abstract Acacia suaveolens (Sm.) Willd is a perennial shrub that forms even‐aged stands, recruited from a soil seed‐bank following fire. It has previously been subject to demographic studies, which used a space‐for‐time substitution to investigate temporal patterns following fire. In the present study the potential for spatial variation across sites was investigated by sampling at several similarly aged populations in Ku‐ring‐gai Chase National Park, northern Sydney, Australia. Significant variation in mean size and fecundity of A. suaveolens individuals was observed among sites, over a 2‐4.6‐fold range in plant size, and a sevenfold range in mean fecundity. The observed variation at 3 years after fire encapsulated most of the variation previously observed among sites 0‐17 years since fire, emphasizing the importance of spatial variation in this species. For each site a two‐stage (seed, plant) matrix model was constructed, and projected from 3 to 25 years following fire. Population growth was measured as number of seeds per 3‐year‐old plant, and found to vary 1.4‐fold across models for different sites. This site‐to‐site variation, as well as that in size, fecundity and survival, was statistically significant. Variation in projected seeds per plant could mostly be attributed to differences in fecundity rather than plant survival. Sensitivity analyses emphasized the biological significance of the variation in fecundity. Whereas previous studies have focused on temporal variation, this work demonstrates the importance of extending our understanding of a species to include the spatial component of population dynamics.  相似文献   

15.
Senecio vulgaris from ruderal habitats may colonise crop fields and persist in the new environment. Persistence may occur through phenotypic plasticity or genetic differentiation. In the presence of genetic variation, differential responses of life history traits to selection may lead to local adaptation. A reciprocal seed transplant experiment was conducted to determine environmental and genetic variation of life history traits in S. vulgaris from ruderal and agricultural habitats, and whether infection by the rust Puccinia lagenophorae is a selection factor in S. vulgaris populations. Emergence, growth and fecundity showed environmental as well as genetic variation, as shown by a significant site and origin effect. However, there was no evidence of local adaptation, as indicated by the absence of significant origin by site interactions. Genetic variation in emerging seedling numbers seems to be important for S. vulgaris, an annual plant which has no means other than seed production for propagation. Seedling survival was solely under environmental control stressing the importance of stochastic events for plant mortality. Most S. vulgaris from ruderal sites showed reduced growth, but still reached reproduction, suggesting that S. vulgaris is following the plastic strategy of a stress tolerator to endure unfavourable environments. Plants at most agricultural sites behaved like r-strategists, exploiting a productive environment for rapid plant growth and maximising reproduction. Emergence, survival, growth and fecundity were higher at the agricultural sites. Infection by the rust occurred at all sites, with the highest incidence at the agricultural sites, and was solely determined by the environment. A higher incidence did not result in an increased disease impact on plant growth and reproduction nor did it affect survival of S. vulgaris. Although the majority of life-history traits studied showed phenotypic and genetic variation, which can both be subject to natural selection, no adaptation of S. vulgaris to its local environment was detected.  相似文献   

16.
The significance of arbuscular mycorrhizal fungi (AMF) in the process of plant invasion is still poorly understood. We hypothesize that invasive plants would change local AMF community structure in a way that would benefit themselves but confer less advantages to native plants, thus influencing the extent of plant interactions. An AMF spore community composed of five morphospecies of Glomus with equal density (initial AMF spore community, I-AMF) was constructed to test this hypothesis. The results showed that the invasive species, Solidago canadensis, significantly increased the relative abundance of G. geosperum and G. etunicatum (altered AMF spore community, A-AMF) compared to G. mosseae, which was a dominant morphospecies in the monoculture of native Kummerowia striata. The shift in AMF spore community composition driven by S. canadensis generated functional variation between I-AMF and A-AMF communities. For example, I-AMF increased biomass and nutrient uptake of K. striata in both monocultures and mixtures of K. striata and S. canadensis compared to A-AMF. In contrast, A-AMF significantly enhanced root nitrogen (N) acquisition of S. canadensis grown in mixture. Moreover, mycorrhizal-mediated 15N uptake provided direct evidence that I-AMF and A-AMF differed in their affinities with native and invading species. The non-significant effect of A-AMF on K. striata did not result from allelopathy as root exudates of S. canadensis exhibited positive effects on seed germination and biomass of K. striata under naturally occurring concentrations. When considered together, we found that A-AMF facilitated the invasion of S. canadensis through decreasing competitiveness of the native plant K. striata. The results supported our hypothesis and can be used to improve our understanding of an ecosystem-based perspective towards exotic plant invasion.  相似文献   

17.
Little is known about positive interactions among members of herbaceous plant communities initiating secondary succession (i.e., ruderal communities). Here, we explored the possibility that Euphorbia schickendantzii (Euphorbia), a latex-containing herb, facilitates other ruderals by protecting them from herbivores in recently plowed and overgrazed sites in central Argentina. To test this hypothesis, we compared plant number, height, reproductive output, and herbivore damage for four species when associated with Euphorbia versus in adjacent open zones without Euphorbia. Additionally, we classified species in the community according to their palatability, and compared community composition, richness, and diversity between Euphorbia and open zones. Dominant (66 % relative abundance) and highly palatable species exhibited increased plant number, size, and fecundity, and decreased herbivory when associated with Euphorbia relative to non-Euphorbia zones. In contrast, a physically and chemically well-defended species showed greater number of individuals in the open and no differences in herbivory between sampling zones. In detrended correspondence analysis, ordination scores of most palatable species were closer to Euphorbia, while those of most unpalatable species were closer to the open. Community composition differed between areas, with six species (25 % of the community) occurring exclusively with Euphorbia and three other species occurring only in open zones. Additionally, richness and diversity were greater in communities associated with Euphorbia than in those associated with non-Euphorbia zones. These results support our hypothesis, highlight the importance of facilitation in altering community-level responses, and indicate that positive interactions can play a more significant role in organizing terrestrial ruderal communities than previously recognized.  相似文献   

18.
The study was planned to investigate DNA fragmentation in fish to screen aquatic toxicity and in Epinephalus chlorostigma and Scamberomorus commerson collected from Red sea near Jizan, Saudi Arabia from three locations “(Corniche North park: “16.92161, 42.54631; Jizan Port: 16.874, 42.54952” N and Jizan Economic City: 17.26589, 42.34738“ ”)“ were used as a case study for the application of comet assay. The study area of the Red Sea is polluted due to anthropogenic activities and the disposal of wastes from multiple sources. Comet and micronucleus assays were used to detect genotoxicity in these fish species harvested from three sites. The concentration of Pb, Cr, Zn, Mn, Cu, Cd, Sn, and Hg was higher in the water samples collected from the polluted site compared to the non-polluted site of the Red sea. Comet assay for S. commerson showed significant (p < 0.05) genetic damage about 44.33 ± 3.03% DNA in comet tail at site S1. It was subsequently reduced to 31.71 ± 3.52% and 22.11 ± 2.52% at sites S2 and S3. E. chlorostigma also showed significant DNA in comet tail as 17.34 ± 2.19%, 11.87 ± 3.01%, and 36.41 ± 3.98% at site S1-S3, respectively. Significant (p < 0.05) DNA damage was observed in the fishes procured from non-polluted locations and upstream locations. The micronucleus induction in E. chlorostigma was recorded as 23.20 ± 4.19 and 2.20 ± 0.58%, respectively, non-polluted and polluted sites. S. commerson exhibited significant differences between polluted and non-polluted sites (44.80 ± 3.73 and 8.20 ± 2.20‰) polluted and upstream (44.80 ± 3.73 and 20.60 ± 4.02‰), respectively. A significant difference was obtained between E. chlorostigma and S. commerson for nuclear abnormalities S. commerson showed higher frequencies for nuclear deformities than E. chlorostigma. S. commerson showed substantial micronucleus induction frequencies collected from an area of low pollution intensity (upstream). This study showed that E. clorostigma and S. commerson could be successfully used as a bioindicator to determine the health of the Red Sea through the most specific assays such as comet and micronucleus tests as an early warning and to devise the monitoring strategies to ensure a safe supply of fish for human consumption.  相似文献   

19.
Different environmental factors can have contrasting effects on the extent of plant local adaptation (LA). Here we evaluate the influence of folivory and soil type on LA in Ruellia nudiflora by performing reciprocal transplants at two sites in Yucatan (Mexico) while controlling for soil source and folivory level. Soil samples were collected at each site and half of the plants of each source at each site were grown with one soil source and half with the other. After transplanting, we reduced folivory by using an insecticide applied to half of the plants of each population source grown on each soil at each site. This resulted in a fully-crossed design with site, population source, soil source and folivory as main effects. We evaluated LA by means of a significant site × origin interaction showing a home-site advantage of native plants. Additionally, to test for an effect of soil source and folivores on LA, we estimated the three-way interactions of site × origin × soil source and site × origin × folivory. We recorded fruit number and survival throughout an 8-month period. For survival, we found evidence of home-site advantage at one site, while for fecundity we found no evidence of LA and at one site even observed evidence of lower fecundity for local relative to foreign plants. Importantly, folivory had no influence on the degree of home-site advantage for either response variable, while soil source influenced the degree of home-site advantage in fecundity at one site (suggesting some degree of specialization to soil characteristics in R. nudiflora). Our results emphasize the need for simultaneously evaluating multiple factors of influence in tests of LA.  相似文献   

20.
AMF symbiosis in sand dunes is the key for maintenance of stable vegetation. The main goal of this work was to determine the effects of environmental and temporal factors on AMF living in sand dunes (Gulf of Valencia, Spain). Soil samples were collected seasonally at 6 sites, during 2 yrs, from three habitats and four plant species and the frequency and relative abundance of AMF was examined. AMF were more frequent in mobile than in embryonic dunes, in spring and in sites with old vegetation. Ten AMF species were identified, their distribution depending mainly on the anthropogenic disturbance of the site. Gigasporaceae Cetraspora sp. and Dentiscutata sp. preferred undisturbed soil whereas Diversisporaceae, Glomeraceae and other Gigasporaceae were associated with recently restored soils. All AMF species were found in all plant species although Corymbiglomus corymbiforme was mainly associated with Echinophora spinosa. Our results might be of help for Mediterranean sand dune restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号