首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Drought is a major threat to wheat growth and crop productivity. However, there has been only limited success in developing drought-hardy cultivars. This lack of progress is due, at least in part, to a lack of understanding of the molecular mechanisms of drought tolerance in wheat. Here, we evaluated the potential role of three cytosolic glyceraldehyde-3-phosphate dehydrogenases (TaGAPC2/5/6) under drought stress in wheat and Arabidopsis. We found that TaGAPC2/5/6 all positively responded to drought stress via reactive oxygen species (ROS) scavenging and stomatal movement. The results of yeast co-transformation and electrophoretic mobility shift assay showed that TaWRKY33 acted as a direct regulator of TaGAPC2/5/6 genes. The dual luciferase reporter assay indicated that TaWRKY33 positively activated the expression of TaGAPC2/5/6. The results of bimolecular fluorescence complementation and yeast two-hybrid system demonstrated that TaGAPC2/5/6 interacted with phospholipase Dδ (PLDδ). We then demonstrated that TaGAPC2/5/6 positively promoted the activity of TaPLDδ in vitro and in vivo. Furthermore, lower PLDδ activity in RNAi wheat could lead to less PA accumulation, causing higher stomatal aperture sizes under drought stress. In summary, our results establish a new positive regulatory mechanism of TaGAPCs which helps wheat fine-tune their drought responses.  相似文献   

4.
Reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide and hydroxyl radicals are generated through normal biochemical processes, but their production is increased by abiotic stresses. The prospects for enhancing ROS scavenging, and hence stress tolerance, by direct gene expression in a vulnerable cell compartment, the chloroplast, have been explored in tobacco. Several plastid transformants were generated which contained either a Nicotiana mitochondrial superoxide dismutase (MnSOD) or an Escherichia coli glutathione reductase (gor) gene. MnSOD lines had a three-fold increase in MnSOD activity, but interestingly a five to nine-fold increase in total chloroplast SOD activity. Gor transgenic lines had up to 6 times higher GR activity and up to 8 times total glutathione levels compared to wild type tobacco. Photosynthetic capacity of transplastomic plants, as measured by chlorophyll content and variable fluorescence of PSII was equivalent to non-transformed plants. The response of these transplastomic lines to several applied stresses was examined. In a number of cases improved stress tolerance was observed. Examples include enhanced methyl viologen (Paraquat)-induced oxidative stress tolerance in Mn-superoxidase dismutase over-expressing plants, improved heavy metal tolerance in glutathione reductase expressing lines, and improved tolerance to UV-B radiation in both sets of plants.  相似文献   

5.
Kong X  Sun L  Zhou Y  Zhang M  Liu Y  Pan J  Li D 《Plant cell reports》2011,30(11):2097-2104
Mitogen-activated protein kinase kinase (MAPKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in regulating both plant development and biotic or abiotic stress responses. In this study, we identified the group C MAPKK gene, ZmMKK4, in maize (Zea mays L.). Overexpression of ZmMKK4 in tobacco enhanced tolerance to osmotic stress by increased proline content and antioxidant enzyme (POD) activities compared with wild-type plants. RT-PCR revealed that one peroxidase (POX) gene, NtPOX1, was higher in ZmMKK4-overexpressing plants than in the wild-type plants. In addition, the accumulation of reactive oxygen species (ROS) in ZmMKK4-overexpressing plants is much less than that of wild-type plants. These results suggest that ZmMKK4 may be involved in ROS signaling. Taken together, these results indicate that ZmMKK4 is a positive regulator of osmotic stress by regulating scavenging of ROS in plants.  相似文献   

6.
Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O2?*), to form peroxynitrite (ONOO?) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc–sulfur clusters, iron–sulfur clusters, and copper, resulting in the formation of a stable metal–nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron–thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress.  相似文献   

7.
As one of the largest gene families in plants, the cytochrome P450 monooxygenase genes (CYPs) are involved in diverse biological processes including biotic and abiotic stress response. Moreover, P450 genes are prone to expanding due to gene tandem duplication during evolution, resulting in generations of novel alleles with the neo‐function or enhanced function. Here, the bread wheat (Triticum aestivum) gene TaCYP81D5 was found to lie within a cluster of five tandemly arranged CYP81D genes, although only a single such gene (BdCYP81D1) was present in the equivalent genomic region of the wheat relative Brachypodium distachyon. The imposition of salinity stress could up‐regulate TaCYP81D5, but the effect was abolished in plants treated with an inhibitor of reactive oxygen species synthesis. In SR3, a wheat cultivar with an elevated ROS content, the higher expression and the rapider response to salinity of TaCYP81D5 were related to the chromatin modification. Constitutively expressing TaCYP81D5 enhanced the salinity tolerance both at seedling and reproductive stages of wheat via accelerating ROS scavenging. Moreover, an important component of ROS signal transduction, Zat12, was proven crucial in this process. Though knockout of solely TaCYP81D5 showed no effect on salinity tolerance, knockdown of BdCYP81D1 or all TaCYP81D members in the cluster caused the sensitivity to salt stress. Our results provide the direct evidence that TaCYP81D5 confers salinity tolerance in bread wheat and this gene is prospective for crop improvement.  相似文献   

8.
Human umbilical cord vascular endothelial cells (HUVECs) cultured without serum and fibroblast growth factor-2 is an in vitro model of ischemic conditions. Our previous study showed that ethyl 3-(o-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazole-4-carboxylate (MPD) could inhibit apoptosis of HUVECs in this model. In this study, we investigated the effect of MPD on angiogenesis and the possible mechanisms. Capillary-like tube formation assay on Matrigel and cell migration assay were performed to investigate the effect of MPD on angiogenesis. The reactive oxygen species (ROS) and interferon-inducible protein 10 (IP-10) levels were respectively evaluated by intracellular ROS assay and western blot analysis. MPD at 5 and 10 ??M promoted vascular structure formation and HUVEC migration in an in vitro ischemic model. MPD promoted angiogenesis through elevating ROS levels and depressing IP-10 level. ROS seemed to be necessary for angiogenesis, and a high level of IP-10 inhibited angiogenesis in ischemic state. ROS provide clues for seeking new key factors involved in angiogenesis. IP-10 may become a new target for future therapeutic intervention. MPD is a good tool for investigating the mechanism of angiogenesis, and MPD might be useful in the development of new drugs in therapy of ischemic diseases.  相似文献   

9.
有氧代谢不可避免产生活性氧(ROS),叶绿体的PSI和PSII反应中心均是ROS产生的主要位点。叶绿体产生的ROS主要有超氧阴离子(O2-)、过氧化氢(H2O2)、羟自由基(.OH)和单线氧(1O2),其中在PSI产生的O2-将进一步产生H2O2和.OH,而1O2产生在PSII。正常生理代谢条件下,叶绿体内抗氧化系统和光能吸收利用的调节保持活性氧产生和消灭的平衡,不会影响植物的正常生理功能。  相似文献   

10.
Increasing evidence indicates that osteoarthritis (OA) is a musculoskeletal disease affecting the whole joint, including both cartilage and subchondral bone. Reactive oxygen species (ROS) have been demonstrated to be one of the important destructive factors during early‐stage OA development. The objective of this study was to investigate isorhamnetin (Iso) treatment on osteoclast formation and chondrocyte protection to attenuate OA by modulating ROS. Receptor activator of nuclear factor‐kappa B ligand (RANKL) was used to establish the osteoclast differentiation model in bone marrow macrophages (BMMs) in vivo. H2O2 was used to induce ROS, which could further cause chondrocyte apoptosis. We demonstrated that Iso suppressed RANKL‐induced ROS generation, which could mediate osteoclastogenesis. Moreover, we found that Iso inhibited osteoclast formation and function by suppressing the expression of osteoclastogenesis‐related genes and proteins. We proved that Iso inhibited RANKL‐induced activation of mitogen‐activated protein kinase activation of mitogen‐activated protein kinase (MAPK), nuclear factor‐kappa B (NF‐κB) and AKT signalling pathways in BMMs. In addition, Iso inhibited ROS‐induced chondrocyte apoptosis by regulating apoptosis‐related proteins. Moreover, Iso was administered to an anterior cruciate ligament transection (ACLT)‐induced OA mouse model. The results indicated that Iso exerted beneficial effects on inhibiting excessive osteoclast activity and chondrocyte apoptosis, which further remedied cartilage damage. Overall, our data showed that Iso is an effective candidate for treating OA.  相似文献   

11.
12.
Salt stress and abscisic acid (ABA) induce accumulation of reactive oxygen species (ROS) in plant cells. ROS not only act as second messengers for the activation of salt-stress responses, but also have deleterious effects on plant growth due to their cytotoxicity. Therefore, the timing and degree of activation of ROS-producing or ROS-scavenging enzymes must be tightly regulated under salt-stress conditions. We identified a novel locus of Arabidopsis, designated itn1 (increased tolerance to NaCl1), whose disruption leads to increased salt-stress tolerance in vegetative tissues. ITN1 encodes a transmembrane protein with an ankyrin-repeat motif that has been implicated in diverse cellular processes such as signal transduction. Comparative microarray analysis between wild-type and the itn1 mutant revealed that induction of genes encoding the ROS-producing NADPH oxidases (RBOHC and RBOHD) under salt-stress conditions was suppressed in the mutant. This suppression was accompanied by a corresponding reduction in ROS accumulation. The ABA-induced expression of RBOHC and RBOHD was also suppressed in the mutant, as was the case for RD29A, an ABA-inducible marker gene. However, the ABA-induced expression of another marker gene, RD22, was not impaired in the mutant. These results suggest that the itn1 mutation partially impairs ABA signaling pathways, possibly leading to the reduction in ROS accumulation under salt-stress conditions. We discuss the possible mechanisms underlying the salt-tolerant phenotype of the itn1 mutant.  相似文献   

13.
Reactive oxygen species (ROS) production and scavenging in plants under drought stress have been studied intensively in recent years. Here we report a global analysis of gene expression for the major ROS generating and scavenging proteins in alfalfa root and shoot under gradual drought stress followed by one-day recovery. Data from two alfalfa varieties, one drought tolerant and one drought sensitive, were compared and no qualitative differences in ROS gene regulation between the two were found. Conserved, tissue-specific patterns of gene expression in response to drought were observed for several ROS-scavenging gene families, including ascorbate peroxidase, monodehydroascorbate reductase, and peroxiredoxin. In addition, differential gene expression within families was observed. Genes for the ROS-generating enzyme, NADPH oxidase were generally induced under drought, while those for glycolate oxidase were repressed. Among the ROS-scavenging protein genes, Ferritin, Cu/Zn superoxide dismutase (SOD), and the majority of the glutathione peroxidase family members were induced under drought in both roots and shoots of both alfalfa varieties. In contrast, Fe-SOD, CC-type glutaredoxins, and thoiredoxins were downregulated.  相似文献   

14.
Salt decreases the uptake of Zn and other minerals and causes nutritional disorders in plants. Zn is an essential micronutrient for all organisms and it is reasonable to hypothesize that Zn status is essential for maintaining salt tolerance in plants. In this study, the physiological and molecular mechanisms of Zn-based alleviation of salt stress in wheat seedlings were investigated. Our results indicate that sufficient Zn nutrition maintained antioxidative enzyme activities and decreased a reactive oxygen species over-accumulation in wheat seedlings. Our data also reveal that sufficient Zn nutrition improved the expression of Na+/H+ antiporter genes, TaSOS1 and TaNHX1, thereby decreasing the Na+ accumulation and subsequently improving salt tolerance in wheat seedlings.  相似文献   

15.
16.
Four mutants induced by ethylmethane sulphonate (N22-H-dgl56, N22-H-dgl101, N22-H-dgl162 and N22-H-dgl219) with conspicuous dark green leaves were identified in the drought and heat-tolerant rice cultivar Nagina22 (N22), when screened under prolonged drought and heat conditions in field. During dark-induced senescence, these mutants maintained higher chlorophyll and carotenoid contents, and photochemical efficiency of photosystem 2 in comparison with N22. Following heat treatment, these mutants accumulated less reactive oxygen species (assayed by histochemical staining for H2O2 and superoxide radicals) and maintained higher chlorophyll content than N22.  相似文献   

17.
Zhang CJ  Zhao BC  Ge WN  Zhang YF  Song Y  Sun DY  Guo Y 《Plant physiology》2011,157(4):1884-1899
Thioredoxins (Trxs) are a multigenic family of proteins in plants that play a critical role in redox balance regulation through thiol-disulfide exchange reactions. There are 10 members of the h-type Trxs in rice (Oryza sativa), and none of them has been clearly characterized. Here, we demonstrate that OsTRXh1, a subgroup I h-type Trx in rice, possesses reduction activity in vitro and complements the hydrogen peroxide sensitivity of Trx-deficient yeast mutants. OsTRXh1 is ubiquitously expressed in rice, and its expression is induced by salt and abscisic acid treatments. Intriguingly, OsTRXh1 is secreted into the extracellular space, and salt stress in the apoplast of rice induces its expression at the protein level. The knockdown of OsTRXh1 results in dwarf plants with fewer tillers, whereas the overexpression of OsTRXh1 leads to a salt-sensitive phenotype in rice. In addition, both the knockdown and overexpression of OsTRXh1 decrease abscisic acid sensitivity during seed germination and seedling growth. We also analyzed the levels of hydrogen peroxide produced in transgenic plants, and the results show that more hydrogen peroxide is produced in the extracellular space of OsTRXh1 knockdown plants than in wild-type plants, whereas the OsTRXh1 overexpression plants produce less hydrogen peroxide under salt stress. These results show that OsTRXh1 regulates the redox state of the apoplast and influences plant development and stress responses.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号