首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl α-D- (1) and methyl β-D-glucofuranosidurono-6,3-lactone (5) were oxidized at C-2 or C-5, 1,2-O-isopropylidene-α-D- (10) and 1,2-O-cyclohexylidene-α-D-glucofuranurono-6,3-lactone (11) at C-5 by various methods to the corresponding D-arabino- or D-xylo-hexulofuranosiduronolactones. In contrast to the starting materials 5, 10, and 11, the 5-uloses 15, 17, and 18 do not exhibit reducing power in alkaline Cu2+ solutions. Methyl 5-O-benzyl-α-D- and methyl 5-O-benzyl-β-D-arabino-2-hexulofuranosidurono-6,3-lactone reduce Benedict solution at room temperature.  相似文献   

2.
Ten diterpenoid alkaloids, including five new ones, sczukiniline A–E (1-5), were isolated from the root of Aconitum sczukinii. Their structures were elucidated based on the interpretation of spectroscopic data (HRESI-MS, IR, 1D- and 2D-NMR). Among the five new diterpenoid alkaloids, 1-3 are hetidine-type C20-diterpenoid alkaloids, while compounds 4 and 5 are lycoctonine-type C19-diterpenoid alkaloids. Noteworthily, sczukiniline A (1) features a novel ester group between C-12 and C-14, forming a D ring containing a lactone structure, resulting in a new skeleton of hetidine-type C20-diterpenoid alkaloid.  相似文献   

3.
15β-Hydroxy-18(43)-abeo-ent-kaur-4(19),16-diene (4) was biotransformed by the fungus Fusarium fujikuroi into 3α,11β,15β-trihydroxy-18(43)-abeo-ent-kaur-4(19),16-diene (5). The hydroxylation at C-3(α) in this diterpene reminds a similar reaction that occurs at C-13 in the biosynthesis of gibberellic acid in this fungus. The presence of the 15β-alcohol in the substrate directs the second hydroxylation at C-11(β), which had been observed in the incubation of ent-kaur-16-ene derivatives with this fungus when the C-19 hydroxylation was inhibited by the existence in the molecule of a 3α-OH or 3-oxo group. We also show that the angelate of the substrate is an undescribed natural product now identified as a component of the plant Distichoselinum tenuifolium.  相似文献   

4.
Derivatives of 6-amino-6-deoxy-D-galactose-6-15N have been synthesized by reaction of the 6-deoxy-6-iodo (1) or 6-O-p-tolylsulfonyl derivative of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose with potassium phthalimide-15N. The reaction of 1 also yielded an elimination product, 6-deoxy-1,2:3,4-di-O-isopropylidene-β-L-arabino-hex-5-enopyranose. The structures of the 6-amino-6-deoxy-D-galactose derivatives and their precursors were characterized by proton- and 13C-n.m.r. spectroscopy, with confirmation of the 13C assignments by selective proton decoupling. Selective broadening of the C-1, C-4, C-5, and C-6 resonances of 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose by low concentrations of cupric ion was observed, and studied by computerized measurements of the 13C linewidths. The application of this broadening to 13C-spectral assignments of amino sugar derivatives is indicated.  相似文献   

5.
Cyclization of trans,trans-[1-3H2,12,13-14C]farnesyl pyrophosphate (2a) by a preparation of trichodiene synthetase isolated from the fungus, Trichothecium roseum, gave trichodiene (5a), which was shown by chemical degradation to retain both tritium atoms of the precursor at C-11. Incubation of 1S-[1-3H,12,13-14C]farnesyl pyrophosphate (2b) and 1R-[1-3H,12,13-14C]farnesyl pyrophosphate (2c) with trichodiene synthetase and degradation of the resulting labeled trichodienes, 5b and 5c, established that the displacement of the pyrophosphate moiety from C-1 of the precursor and formation of the new C-C bond in the formation of trichodiene takes place with net retention of configuration. These results are accounted for by an isomerization-cyclization mechanism involving the intermediacy of nerolidyl pyrophosphate (4).  相似文献   

6.
3-C-(Acetamidomethyl)-1,2-O-isopropylidene-β-l-threofuranose (4) and the 3-acetate (5) have been prepared in high yields from mono-O-isopropylidene-d-apiose [3-C-(hydroxymethyl)-1,2-O-isopropylidene-β-l-threofuranose] (1). Acid-catalyzed methanolysis of 4 caused migration of the isopropylidene group and the formation of methyl 4-acetamido-4-deoxy-3-C-(hydroxymethyl)-2,3-O-isopropylidene-β-d-erythrofuranoside (8) in 25% yield. The major product (45%) from the acetolysis of 4 was also a pyrrolidine derivative, namely, 4-acetamido-3-C-(acetoxymethyl)-1-O-acetyl-4-deoxy-2,3-O-isopropylidene-β-d-erythrofuranose (10). Acetolysis of 5 removed the isopropylidene group and gave four acetylated pyrrolidines (isomeric at C-1 and C-2). Conditions which resulted in minimal epimerization at C-2 were established, and the major isomers 12 and 13 were isolated in reasonable yields. 1H- and 13C-n.m.r. data for equilibrium solutions of the pyrrolidines, and for intermediates 1-5, are given.  相似文献   

7.
Phytochemical research of Pteris multifida Poir. led to the isolation of fifteen compounds, including six flavonoids (16) and nine sesquiterpenoids (715). Their structures were characterized by NMR, MS, ORD and CD data. Compounds kaempferol 3-O-α-L-rhamnoside-7-O-β-D-glucoside (1), myricetin 3-O-β-D-glucoside (2), kaempferol 3-O-β-D-glucoside (4), luteolin-7-O-β-D-rutinoside (5), quercetin-3-O-α-L-rhamnopyranoside (6), (2S,3S)-12-hydroxypterosin Q (7), (2S,3S)-pterosin Q (8), 2-hydroxypterosin C (9) and (2S)-12-hydroxypterosin A (10) were first isolated from P. multifida, and compounds 12 and 10 were first isolated from the family Pteridaceae. Furthermore, the chemotaxonomic significance of the isolates was discussed.  相似文献   

8.
Phytochemical investigation on the whole plant of Anemone rivularis var. flore-minore led to the isolation of a new labdane-type diterpene glycoside (1) and a new trihydroxyfuranoid lignanoid glycoside (2), together with three known triterpene and triterpenoid glycosides (35). The structures of the two new compounds were elucidated as β-d-glucopyranosyl (13S)-13-hydroxy-7-oxo-labda-8,14-diene-18-oate (1) and (7S,7′R,8R,8′S)-7′-butoxy-7,9′-epoxy-4,4′,9-trihydroxy-3,3′-dimethoxylignane 9-O-β-d-glucopyranoside (2), on the basis of extensive spectral analysis and chemical evidence. Compound 1 is characterized by a glucose (Glc) esterified C-18 carboxyl group, which is a rarely encountered labdane-type diterpene glycoside in nature. The two new compounds (1 and 2) reported here are the first examples of diterpene glycoside and lignanoid glycoside found in the genus Anemone, and the known triterpene and triterpenoid glycosides (35) are identified for the first time from the title plant.  相似文献   

9.
Two new minor “Valeriana type” iridoid glycosides (1) and (2) along with 3 known flavonol glycosides [quercetin-3-O-β-glucopyranosyl-7-O-α-rhamnopyranoside (3), quercetin-3-O-β-glucopyranoside (4) and isorhamnetin-3-O-β-glucopyranoside (5)] were isolated from Sambucus ebulus L. leaves. Their structures were unambiguously elucidated by means of 1D- and 2D-NMR, and UPLC-TOF MS. Compound 2 is a rare representative of iridoid diglycosides, containing uncommon ribohexo-3-ulopyranosyl sugar moiety.  相似文献   

10.
《Phytochemistry》1987,26(4):1185-1188
In continuation of our chemosystematic study of Stachys (Labiatae) we have isolated the previously reported isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (1) and 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (4) and four new allose-containing flavonoid glycosides from S. anisochila. The new glycosides are hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranside] (6) as well as the three corresponding diacetyl analogues of 1, 4 and 6, isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside], 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside] and hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside]. Extensive two-dimensional NMR studies (proton-carbon correlations, COSY experiments) allowed assignment of all 1H NMR sugar signals and a correction of the 13C NMR signal assignments for C-2 and C-3 of the allose.  相似文献   

11.
Silver carbonate on Celite (the Fetizon reagent) was shown to be selective as an oxidizing agent, and convenient for the preparation of various aldonolactones. Whereas substituted aldoses having the 1-hydroxyl group free were readily converted into the corresponding lactones, partially protected 2-acetamido-2-deoxypyranoses having more than one free hydroxyl group were selectively oxidized at C-1. The oxidation was carrried out in boiling benzene or 1,4-dioxane. A series of partially protected 2-acetamido-2-deoxy-1,5-aldonolactones [2-acetamido-4,6-O-benzylidene-2-deoxy-D-mannono-1,5-lactone (13),2-acetamido-4,6-O-benzylidene-2-deoxy-D-glucono-1,5-lactone (15), 2-acetamido-2-deoxy-4,6-O-isopropylidene-D-glucono-1,5-lactone (18), 2-acetamido-2-deoxy-4,6-O-isopropylidene-D-mannono-1,5-lactone (20), 2-acetamido-2-deoxy-3,4-di-O-methyl-D-mannono-1,5-lactone (24), and 2-acetamido-2-deoxy-3,4-di-O-methyl-D-glucono-1,5-lactone (25)] was thus prepared; for these, the oxidation was accompanied by two side-reactions: (a) an elimination (dehydration) that gave the unsaturated lactones [2-acetamido-4,6-O-benzylidene-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (12), 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-D-erythro-hex-2-enono-1,5-lactone (17), and 2-acetamido-2,3-dideoxy-4-O-methyl-D-erythro-hex-2-enono-1,5-lactone (23)], and (b) partial gluco-to-manno epimerization occurring during the oxidation of 2-acetamido-4,6-O-benzylidene-2-deoxy-D-glucopyranose (14), 2-acetamido-2-deoxy-4,6-O-isopropylidene-D-glucopyranose (16), and 2-acetamido-2-deoxy-3,4-di-O-methyl-D-glucopyranose (22).The free unsaturated lactone, 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (26), was obtained on hydrolysis of the isopropylidene group in lactone 17.  相似文献   

12.
Methyl 2,3-anhydro-4,6-O-benzylidene-3-C-nitro-β-d-allopyranoside (1), as well as its β-d-manno (2) and α- d-manno (3) isomers, reacted with dimethylamine to give the same, crystalline 3-(dimethylamino) adduct (4) of 1,5-anhydro-4,6-O-benzylidene-2-deoxy-2-(dimethylamino)-d-erythro-hex-1-en-3-ulose (5). The enulose 5 was obtained from 4 by the action of silica gel. Similarly, the β-d-gulo (6) and α-d-talo (7) stereoisomers of 13 afforded a 3-(dimethylamino) adduct (8) of the d-threo isomer (9) of 5. Reaction of dimethylamine with 5,6-anhydro-1,2-O-isopropylidene-6-C-nitro-α-d-glucofuranose (10) yielded a mixture of two diastereoisomeric (possibly anometic at C-6) 5-deoxy-5-(dimethylamino)-1,2-O-isopropylideric-α-d-hexodialdo-1,4:6,3-difuranoses (11). The β-glycoside 1 and the α-glycoside 3 reacted with methylmagnesium iodide to produce methyl 4,6-O-benzylidene-3-deoxy-3-C-methyl-3-(N-hydroxy-N-methylamino)-β- and -α-d-hexopyranosides (12) and (13), respectively; both products had the 1,2-trans configuration, but their configurations at the quaternary center C-3 have not been determined.  相似文献   

13.
Four aldohexoses were individually subjected to the reagent mixture and temperature cited in the title; in each case, the 2,2-dimethoxypropane was present in only a small molar excess and the p-toluenesulfonic acid was used in trace amounts. D-Mannose (1) afforded the known 2,3:5,6-di-O-isopropylidene-D-mannofuranose (2) in significantly higher yield than when the reaction was conducted at room temperature. The other three aldoses, however, gave products markedly different from those formed under the milder conditions. 2-Acetamido-2-deoxy-D-mannose (3) gave a mixture of products from which methyl 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-α-D-mannofuranoside (4), 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-D-mannofuranose (5a), and methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-α-D-mannofuranoside (6a) were isolated. 2-Acetamido-2-deoxy-D-galactose (11) gave compounds identified as methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-galactofuranoside (12a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-galactopyranoside (13a). 2-Acetamido-2-deoxy-D-glucose (16) afforded methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside (17a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (18a). Evidence in support of the structures assigned to these new derivatives is presented.  相似文献   

14.
Sixteen new and one known metabolites 4-20 were obtained by incubation of tibolone (1) and hydroxytibolones (2 and 3) with various fungi. Their structures were elucidated by means of a homo and heteronuclear 2D NMR and by HREI-MS techniques. The relative stereochemistry was deduced by 2D NOESY experiment. Metabolites of tibolone (1) exhibited significant inhibitory activities against α-glucosidase and tyrosinase enzymes. Hydroxylations at C-6, C-10, C-11, C-15 positions and α,β-unsaturation at C-1/C-2, C-4/C-5 showed potent inhibitory activities against these enzymes.  相似文献   

15.
Phytochemical investigation on the whole plant of Clematis lasiandra Maxim led to the isolation of two new phenolic glycosides (1 and 2), one new lignanoid glycoside (3), together with three known lignanoid glycosides (46). The structures of the new compounds were elucidated as 4-O-β-d-galactopyranosyl-ethyl-E-caffeate (1), 4-O-β-d-galactopyranosyl-3-hydroxyl-phenylethene (2) and (8R)-3,3′-dimethoxy-4,4′,9,9′-tetrahydroxy-5′,8-lignan 3′-O-β-d-glucopyranoside (3), on the basis of extensive spectral analysis and chemical evidence. The characteristic of the polymerized C-5′–C-8 type lignanoid aglycone in glycoside 3 was found from genus Clematis for the first time. Compounds 16 were evaluated for their cytotoxicity against human tumor cell lines HL-60, Hep-G2 and SGC-7901, the new glycosides 1 and 2 showed significant cytotoxicity against those three tumor cell lines with IC50 in the range from 9.73 to 22.31 μM, while lignanoid glycosides 36 showed weak cytotoxicity to those test cell lines with IC50 value more than 52.71 μM.  相似文献   

16.
Three new humulane-type sesquiterpenes, 8-O-(p-coumaroyl)-5β-hydroperoxy-1(10)E,4(15)-humuladien-8α-ol (1), 8-O-(3-nitro-p-coumaroyl)-1(10)E,4(15)-humuladien-5β,8α-diol (2) and 8-O-(p-coumaroyl)-1(10)E,4(5)E-humuladien-8-ol (3), and a new copaborneol derivative, 1-O-p-coumaroyl-copaborneol (4), have been isolated from the methanol extract of Pilea cavaleriei Lévl. subsp. crenata C. J. Chen. Their structures were elucidated using spectroscopic methods. Cytotoxic and antimicrobial activities of the isolated compounds were evaluated.  相似文献   

17.
The products (1) from the periodate oxidation of 1,2-O-isopropylidene-α-D-glucofuranose were converted by ethynylmagnesium bromide into a separable, 14:11 mixture of 6,7-dideoxy-1.2-O-isopropylidene-β-L-ido-hept-6-ynofuranose (2) and its α-D-gluco analog 3. These crystalline products were further characterized as their respective 3,5-diacetates (5 and 7) and 3,5-dibenzoates (4 and 6). Ozonolysis of 2 and 3 led to 1,2-O-isopropylidene-β-L-idofuranurono-6,3-lactone (8) and its α-D-gluco analog 9, respectively; similar ozonolysis of the dibenzoates 4 and 6, followed by treatment with diazomethane, gave methyl 3,5-di-O-benzoyl-1,2-O-isopropylidene-α-L-idofuranuronate (10) and its α-D-gluco analog 11, respectively. Diborane reduction of the ozonolysis products from 4 gave 1,2-O-isopropylidene-β-L-idofuranose (13) as its 3,5-dibenzoate (12), and a similar sequence was performed with 6. The propargylic alcohols 2 and 3 were reduced by lithium aluminum hydride, in high yield, to the allylic alcohol analogs 15 and 16, further characterized as their 3,5-dibenzoates 17 and 18; compounds 15 and 16 were also obtainable by vinylation of compounds 1. The two series of derivatives in this work, epimeric at C-5, were examined comparatively by polarimetry and p.m.r. spectroscopy.  相似文献   

18.
Four cycloartane glycosides, 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-3β,6α,16β,23α,25-pentahydroxy-20(R),24(S)-epoxycycloartane (1), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-16-O-hydroxyacetoxy-23-O-acetoxy-3β,6α,25-trihydroxy-20(R),24(S)-epoxycycloartane (2), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-3β,6α,23α,25-tetrahydroxy-20(R),24(R)-16β,24;20,24-diepoxycycloartane (3), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-25-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), along with three known cycloartane glycosides were isolated from the MeOH extract of the roots of Astragalus campylosema ssp. campylosema. Their structures were established by the extensive use of 1D- and 2D-NMR experiments along with ESIMS and HRMS analysis. The occurrence of the hydroxyl function at position 23 (1-2) and of the ketalic function at C-24 (3) are very unusual findings in the cycloartane class.  相似文献   

19.
《Carbohydrate research》1986,146(1):113-128
Isolevoglucosenone (1,6-anhydro-2,3-dideoxy-β-d-glycero-hex-2-enopyranos-4-ulose, 3) has been synthesized from levoglucosenone (2) in six steps. Thus, 1,6-anhydro-4-O-benzyl-3-deoxy-β-d-erythro-hexopyranos-2-ulose, obtained by Michael addition of benzyl alcohol to 2, was reduced with sodium borohydride to yield a separable mixture of the C-2 epimeric alcohols 1,6-anhydro-4-O-benzyl-3-deoxy-β-d-arabino- and -ribo-hexopyranose, both of which displayed intramolecular hydrogen-bonding. Acetylation, hydrogenolytic debenzylation, and pyridinium chlorochromate oxidation then led to the 2-O-acetyl-1,6-anhydro-hexos-4-uloses, from which 3 was obtained by tetraethylammonium acetate-catalyzed β-elimination of acetic acid. On sealed-tube thermolysis in the range of 210–260°, 3 generated 3-oxidopyrylium by loss of formaldehyde; this ylide was efficiently trapped by unreacted 3, to yield the [4π + 2π]-1,3-dipolar cycloadducts 14 and 15. The structure of 14 was fully elucidated by an X-ray crystallographic study. Neither 3 was, nor the adducts 14 and 15 were, detected among the products from acid-catalyzed pyrolysis of cellulose.  相似文献   

20.
Alla A. Kicha 《Steroids》2009,74(2):238-1018
Five new steroidal monoglycosides, kurilensosides E (1), F (2), G (3), H (4) and 15-O-sulfate of echinasteroside C (5) were isolated along with the previously known echinasteroside C (6) from the alcoholic extract of the Far Eastern starfish Hippasteria kurilensis collected near Kuril Islands. Compounds 1-3 were determined to contain unusual polyhydroxysteroidal aglycons lacking 6-hydroxy group. Aglycon moiety of kurilensoside H (4) was shown to be the first case of marine polar steroids containing 4,5-epoxy functionality. Hypothetic pathways of the biosynthesis of polyhydroxysteroids and related glycosides in starfish and the existence of the late C-6 oxidation pathway in H. kurilensis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号