首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gillnet sampling and analyses of otolith shape, vertebral count and growth indicated the presence of three putative Atlantic herring (Clupea harengus L.) populations mixing together over the spawning season February–June inside and outside an inland brackish water lake (Landvikvannet) in southern Norway. Peak spawning of oceanic Norwegian spring spawners and coastal Skagerrak spring spawners occurred in March–April with small proportions of spawners entering the lake. In comparison, spawning of Landvik herring peaked in May–June with high proportions found inside the lake, which could be explained by local adaptations to the environmental conditions and seasonal changes of this marginal habitat. The 1.85 km2 lake was characterized by oxygen depletion occurring between 2.5 and 5 m depth between March and June. This was followed by changes in salinity from 1–7‰ in the 0–1 m surface layer to levels of 20–25‰ deeper than 10 m. In comparison, outside the 3 km long narrow channel connecting the lake with the neighboring fjord, no anoxic conditions were found. Here salinity in the surface layer increased over the season from 10 to 25‰, whereas deeper than 5 m it was stable at around 35‰. Temperature at 0–5 m depth increased significantly over the season in both habitats, from 7 to 14°C outside and 5 to 17°C inside the lake. Despite differences in peak spawning and utilization of the lake habitat between the three putative populations, there was an apparent temporal and spatial overlap in spawning stages suggesting potential interbreeding in accordance with the metapopulation concept.  相似文献   

2.
Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non‐native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non‐native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common. The North Sea–Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non‐native species.  相似文献   

3.
In the brackish Baltic Sea situated in the transition zone between the Atlantic and Euro-Asiatic continental climate systems, the periods of high abundance of sprat of marine boreal origin coincide with a rich freshwater discharge, large water volume inhabitable by fish, rather high winter temperature and low salinity limiting the stock of its main predator—cod (Gadus morhua callarias). In the freshening periods an additional volume of water with acceptable oxygen and temperature conditions for sprat is formed in the Eastern (E) and, especially, the Northwest (NW) regions of the Baltic Sea. This allows extraordinary increase in sprat abundance/biomass. The conditions for sprat deteriorate during the period of active saline water inflows and colder winters, especially in the NW region. Following the decrease in the volume of water acceptable for the wintering of sprat as to temperature and/or oxygen concentration, some part of the stock may be forced to migrate southwards as in the Southwest (SW) region the conditions are the most stable. This may cause an extensive mixing of the stock components of various regions, hindering the differentiation of sprat regional units in the Baltic Sea. As no isolation of regional spawning concentrations has been found, beginning with 1989 the Baltic sprat has been assessed and managed as one stock unit, despite spatial differences in its morphological characters, growth rate etc. The alternation of periods of different regime-forming conditions (freshening or oceanization) is probably triggered by climate changes. This regularity has been exploited for the composition of long-term forecasts of qualitative changes in fish (incl. sprat) stocks in the Baltic Sea.  相似文献   

4.
Culturability and coexistence of bacterioplankton exhibiting different life strategies were investigated in the Baltic Sea and Skagerrak Sea. Bacterial numbers were estimated using a dilution-to-extinction culturing assay (DCA) and calculated as the most probable number, based on six different methods to detect bacterial growth in the DCA. Irrespective of the method used to detect growth, the fraction of multiplying cells never exceeded 10%, using the total count of 4′,6′-diamidino-2-phenylindole (DAPI)-stainable cells as a reference. Furthermore, the data also showed that non-colony-forming bacteria made up the majority of the viable cells, confirming molecular results showing dominance of non-colony-forming bacteria in clone libraries. The results obtained are in agreement with previous observations, indicating that bacterial assemblages in seawater are dominated by small, active subpopulations coexisting with a large group of inactive cells. The ratio of colony-forming to non-colony-forming bacteria was approximately 10 to 20 times higher in the brackish Baltic Sea than in the Skagerrak Sea. These two sea areas differ in (for example) their levels of bacterial production, dissolved organic carbon, and salinity. We suggest that the relative importance of colony-forming versus non-colony-forming bacterioplankton may be linked to environmental characteristics.  相似文献   

5.
Colony-forming cyanobacteria of the genus Aphanizomenon form massive blooms in the brackish water of the Baltic Sea during the warmest summer months. There have been recent suggestions claiming that the Baltic Sea Aphanizomenon species may be different from Aphanizomenon flos-aquae found in lakes. In this study, we examined variability in the morphology and 16S-23S rRNA internal transcribed spacer (ITS) sequences of A. flos-aquae populations along a salinity gradient from a string of lakes to a fjord-like extension of the Baltic Sea to the open Baltic Sea. Morphological differences among the populations were negligible. We found that the Baltic Sea was dominated (25 out of 27 sequences) by one ITS1-S (shorter band of ITS 1 [ITS1]) genotype, which also was found in the lakes. The lake populations of A. flos-aquae tended to be genetically more diverse than the Baltic Sea populations. Since the lake ITS1-S genotypes of A. flos-aquae are continuously introduced to the Baltic Sea via inflowing waters, it seems that only one ITS1 genotype is able to persist in the Baltic Sea populations. The results suggest that one of the ITS1-S genotypes found in the lakes is better adapted to the conditions of the Baltic Sea and that natural selection removes most of the lake genotypes from the Baltic Sea A. flos-aquae populations.  相似文献   

6.
Even if many Vibrio spp. are endemic to coastal waters, their distribution in northern temperate and boreal waters is poorly studied. To identify environmental factors regulating Vibrio populations in a salinity gradient along the Swedish coastline, we combined Vibrio-specific quantitative competitive PCR with denaturant gradient gel electrophoresis-based genotyping. The total Vibrio abundance ranged from 4 × 103 to 9.6 × 104 cells liter−1, with the highest abundances in the more saline waters of the Skagerrak Sea. Several Vibrio populations were present throughout the salinity gradient, with abundances of single populations ranging from 5 × 102 to 7 × 104 cells liter−1. Clear differences were observed along the salinity gradient, where three populations dominated the more saline waters of the Skagerrak Sea and two populations containing mainly representatives of V. anguillarum and V. aestuarianus genotypes were abundant in the brackish waters of the Baltic Sea. Our results suggest that this apparent niche separation within the genus Vibrio may also be influenced by alternate factors such as nutrient levels and high abundances of dinoflagellates. A V. cholerae/V. mimicus population was detected in more than 50% of the samples, with abundances exceeding 103 cells liter−1, even in the cold (annual average water temperature of around 5°C) and low-salinity (2 to 4‰) samples from the Bothnian Bay (latitude, 65°N). The unsuspected and widespread occurrence of this population in temperate and boreal coastal waters suggests that potential Vibrio pathogens may also be endemic to cold and brackish waters and hence may represent a previously overlooked health hazard.  相似文献   

7.
The aim of this study was to investigate photosynthetic differences between the marine, Norwegian Sea ecotype and the brackish, Bothnian Sea ecotype of F. vesiculosus and F. radicans and to see whether photosynthetic differences could be connected with the relative amounts of D1 protein (PSII), PsaA (PSI) protein and/or Rubisco. For this purpose, we tested if a higher photosynthetic maximum (P max) in the Atlantic Ocean ecotype of F. vesiculosus relative to the Baltic Sea ecotype, and an increase of the P max in Baltic Sea ecotype of F. vesiculosus at higher salinity, could be due to an increase in the relative amounts of Rubisco. The proteins have been evaluated on a relative basis. Immunoblot signals showed that the amount of Rubisco was higher in both ecotypes of F. vesiculosus than in F. radicans, but no differences could be detected between the two ecotypes of F. vesiculosus. The results suggest an uneven photosystem protein stoichiometry in Fucus, with more of the PSI protein PsaA relative to the PSII protein D1. The difference in P max between the two ecotypes of F. vesiculosus might be related to the difficulties for the algae to adapt to the environment in Bothnian Sea.  相似文献   

8.

Background

An important objective of evolutionary biology is to understand the processes that govern phenotypic variation in natural populations. We assessed patterns of morphological and genetic divergence among coastal and inland lake populations of nine-spined stickleback in northern Sweden. Coastal populations are either from the Baltic coast (n = 5) or from nearby coastal lakes (n = 3) that became isolated from the Baltic Sea (< 100 years before present, ybp). Inland populations are from freshwater lakes that became isolated from the Baltic approximately 10,000 ybp; either single species lakes without predators (n = 5), or lakes with a recent history of predation (n = 5) from stocking of salmonid predators (~50 ybp).

Results

Coastal populations showed little variation in 11 morphological traits and had longer spines per unit of body length than inland populations. Inland populations were larger, on average, and showed greater morphological variation than coastal populations. A principal component analysis (PCA) across all populations revealed two major morphological axes related to spine length (PC1, 47.7% variation) and body size (PC2, 32.9% variation). Analysis of PCA scores showed marked similarity in coastal (Baltic coast and coastal lake) populations. PCA scores indicate that inland populations with predators have higher within-group variance in spine length and lower within-group variance in body size than inland populations without predators. Estimates of within-group P ST (a proxy for Q ST) from PCA scores are similar to estimates of F ST for coastal lake populations but P ST > F ST for Baltic coast populations. P ST > F ST for PC1 and PC2 for inland predator and inland no predator populations, with the exception that P ST < F ST for body size in inland populations lacking predators.

Conclusions

Baltic coast and coastal lake populations show little morphological and genetic variation within and between groups suggesting that these populations experience similar ecological conditions and that time since isolation of coastal lakes has been insufficient to demonstrate divergent morphology in coastal lake populations. Inland populations, on the other hand, showed much greater morphological and genetic variation characteristic of long periods of isolation. Inland populations from lakes without predators generally have larger body size, and smaller spine length relative to body size, suggesting systematic reduction in spine length. In contrast, inland populations with predators exhibit a wider range of spine lengths relative to body size suggesting that this trait is responding to local predation pressure differently among these populations. Taken together the results suggest that predation plays a role in shaping morphological variation among isolated inland populations. However, we cannot rule out that a causal relationship between predation versus other genetic and environmental influences on phenotypic variation not measured in this study exists, and this warrants further investigation.  相似文献   

9.
Culturability and coexistence of bacterioplankton exhibiting different life strategies were investigated in the Baltic Sea and Skagerrak Sea. Bacterial numbers were estimated using a dilution-to-extinction culturing assay (DCA) and calculated as the most probable number, based on six different methods to detect bacterial growth in the DCA. Irrespective of the method used to detect growth, the fraction of multiplying cells never exceeded 10%, using the total count of 4',6'-diamidino-2-phenylindole (DAPI)-stainable cells as a reference. Furthermore, the data also showed that non-colony-forming bacteria made up the majority of the viable cells, confirming molecular results showing dominance of non-colony-forming bacteria in clone libraries. The results obtained are in agreement with previous observations, indicating that bacterial assemblages in seawater are dominated by small, active subpopulations coexisting with a large group of inactive cells. The ratio of colony-forming to non-colony-forming bacteria was approximately 10 to 20 times higher in the brackish Baltic Sea than in the Skagerrak Sea. These two sea areas differ in (for example) their levels of bacterial production, dissolved organic carbon, and salinity. We suggest that the relative importance of colony-forming versus non-colony-forming bacterioplankton may be linked to environmental characteristics.  相似文献   

10.
This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.  相似文献   

11.
Colony-forming cyanobacteria of the genus Aphanizomenon form massive blooms in the brackish water of the Baltic Sea during the warmest summer months. There have been recent suggestions claiming that the Baltic Sea Aphanizomenon species may be different from Aphanizomenon flos-aquae found in lakes. In this study, we examined variability in the morphology and 16S-23S rRNA internal transcribed spacer (ITS) sequences of A. flos-aquae populations along a salinity gradient from a string of lakes to a fjord-like extension of the Baltic Sea to the open Baltic Sea. Morphological differences among the populations were negligible. We found that the Baltic Sea was dominated (25 out of 27 sequences) by one ITS1-S (shorter band of ITS 1 [ITS1]) genotype, which also was found in the lakes. The lake populations of A. flos-aquae tended to be genetically more diverse than the Baltic Sea populations. Since the lake ITS1-S genotypes of A. flos-aquae are continuously introduced to the Baltic Sea via inflowing waters, it seems that only one ITS1 genotype is able to persist in the Baltic Sea populations. The results suggest that one of the ITS1-S genotypes found in the lakes is better adapted to the conditions of the Baltic Sea and that natural selection removes most of the lake genotypes from the Baltic Sea A. flos-aquae populations.  相似文献   

12.
Climate change experts largely agree that future climate change and associated rises in oceanic water levels over the upcoming decades, will affect marine salinity levels. The subsequent effects on fish communities in estuarine ecosystems however, are less clear. One species that is likely to become increasingly affected by changes in salinity is the ide (Leuciscus idus). The ide is a stenohaline freshwater fish that primarily inhabits rivers, with frequent anadromous behavior when sea salinity does not exceed 15%. Unlike most other anadromous Baltic Sea fish species, the ide has yet to be subjected to large‐scale stocking programs, and thus provides an excellent opportunity for studying the natural population structure across the current salinity gradient in the Danish Belts. To explore this, we used Genotyping‐by‐Sequencing to determine genomic population structure of both freshwater resident and anadromous ide populations in the western Baltic Sea region, and relate the results to the current salinity gradient and the demographic history of ide in the region. The sample sites separate into four clusters, with all anadromous populations in one cluster and the freshwater resident populations in the remaining three. Results demonstrate high level of differentiation between sites hosting freshwater resident populations, but little differentiation among anadromous populations. Thus ide exhibit the genomic population structure of both a typical freshwater species, and a typical anadromous species. In addition to providing a first insight into the population structure of north‐western European ide, our data also (1) provide indications of a single illegal introduction by man; (2) suggest limited genetic effects of heavy pollution in the past; and (3) indicate possible historical anadromous behavior in a now isolated freshwater population.  相似文献   

13.
Recent studies showing consequences of species’ genetic diversity on ecosystem performance raise the concern of how key ecosystem species are genetically structured. The bladder wrack Fucus vesiculosus L. is a dominant species of macroalga in the northern Atlantic, and it is particularly important as a habitat‐forming species in the Baltic Sea. We examined the genetic structure of populations of F. vesiculosus with a hierarchical approach from a within‐shore scale (10 m) to a between‐seas scale (Baltic Sea–Skagerrak, 800 km). Analysis of five microsatellite loci showed that population differentiation was generally strong (average FST = 12%), being significant at all spatial scales investigated (101, 103, 104–5, 106 m). Genetic differentiation between seas (Baltic Sea and Skagerrak) was substantial. Nevertheless, the effects of isolation by distance were stronger within seas than between seas. Notably, Baltic summer‐reproducing populations showed a strong within‐sea, between‐area (70 km) genetic structure, while Baltic autumn‐reproducing populations and Skagerrak summer‐reproducing populations revealed most genetic diversity between samples within areas (<1 km). Despite such differences in overall structure, Baltic populations of summer‐ and autumn‐reproducing morphs did not separate in a cluster analysis, indicating minor, if any, barriers to gene flow between them. Our results have important implications for management and conservation of F. vesiculosus, and we raise a number of concerns about how genetic variability should be preserved within this species.  相似文献   

14.
Genetic studies on Atlantic herring, Clupea harengus, have generally revealed a low level of genetic variation over large geographic areas. Genetically distinct herring populations in some of the Norwegian fjords are exceptions, and juvenile herring from the large oceanic herring, Norwegian Spring Spawners (NSS), are often found in mixture with local fjord populations as well as widely distributed in the Barents Sea. Research surveys in the eastern Barents Sea (Goose Bank) in 1993, 1994 and 2001 included collection of herring samples for allozyme analyses. As expected the results identified juveniles from NSS stock, but an additional unique group of herring (low vertebrae number), being almost fixed for alternative alleles at several allozyme loci, was detected. In some cases, the two groups of herring were taken in the same trawl catches as documented by highly significant departure from Hardy—Weinberg expectation with large excess of homozygotes providing evidence for population mixing. Large genetic differences (Nei's genetic distance = 1.53; FST = 0.754) were detected in pairwise comparisons based on five allozyme loci. The two herring groups were also compared with reference samples of Pacific herring, Clupea pallasi, including one sample from Japan Sea and three Alaskan samples. UPGMA dendrogram based on five allozyme loci revealed a close genetic relationship between the low vertebrae herring in the Barents Sea and the group of samples of Pacific herring. Although significant different in allele frequencies, one of the herring samples clustered together with the reference sample from Bering Sea with genetic distance of 0.008 and FST value of 0.032. The close genetic relationship found in this paper, suggest a re-evaluation of the taxonomic status of the Barents Sea herring populations investigated.  相似文献   

15.
Numbers of luminous bacteria were counted at three stations of the brackish water ecosystem of the western Baltic Sea from July 1985 to July 1986. Additional samples were taken during three cruises from stations at the North Atlantic Ocean, the Norwegian Sea and adjacent marine areas. — In Kiel Bight (western Baltic) values varied between 0 and 68,000 luminous cfu 1−1. With exception of the coastal station a distinct seasonal distribution pattern was shown in a water depth of 20 m: high numbers found in summer were opposed to low numbers in winter, the peaks being rather high in comparison to those of other areas. Statistical analysis showed that the results of 20 m were significantly different from those of 0 and 10 m depth; however, there was no correlation with temperature and salinity. Taxonomic studies revealed that the population consisted primarily of the genus Photobacterium. — The optimum of salinity was not a brackish but a marine one and was about 30% for the majority of the strains tested. A smaller number of strains grew best at a salinity between 10 and 15%. Optima of temperature ranged from 15 to 20 °C for most of the test strains. — Taxonomic analysis was also performed with luminous strains from marine areas adjacent to the western Baltic Sea, Photobacterium being the dominant genus here, too. Luminous bacteria were also enriched from the external surface and the gut contents of whitings (Merlangius merlangus) and cods (Gadus morhua). A model is proposed which explains the distribution pattern found. According to this, the gut-dwelling luminous bacteria are transported by their hosts from the North Sea into the western Baltic Sea. Here they are released into the environment, thus inhabiting another niche.  相似文献   

16.
Fifty specimens each of bream Abramis brama and roach Rutilus rutilus were examined for metazoan parasite fauna and trichodinid ciliates; 25 specimens of each species were collected from the Kiel Canal, a man-made waterway, and a nearby freshwater lake, the Dieksee. This is the first detailed parasitological examination of A. brama and R. rutilus at these locations: 30 parasite species were found, comprising 4 protozoans, 4 myxozoans, 5 digeneans, 3 monogeneans, 2 cestodes, 6 nematodes, 2 acanthocephalans, 3 crustaceans and 1 hirudinean. The crustacean Caligus lacustris occurred in both habitats while 2 other crustacean species, 2 acanthocephalans and 1 hirudinean were recorded exclusively for the lake habitat. Larval as well as adult stages of the different parasite species were found, indicating that both fish species act as intermediate and final hosts in both habitats. The Kiel Canal (total of 17 parasite species) showed a lower parasite species richness for A. brama and R. rutilus (14 and 10 parasite species, respectively) than the lake (25 parasite species). A. brama had a higher parasite richness (22 species) than R. rutilus (16 species) in the lake habitat. Most parasites collected were of freshwater origin. Consequently, the observed infection pattern of both fish species in the waterway is mainly influenced by the limited salinity tolerance of freshwater parasites, which are negatively affected even by a salinity of 2.3 to 4.5. In the central Kiel Canal, neither fish species was infected with marine parasites of low host specifity. These parasites are either limited by the low salinity at this sampling site (<4.5 to 6.0) or they cannot enter the canal due to the environmental conditions prevailing in this artificial brackish water habitat. Thus, the canal may comprise a natural barrier preventing the distribution of North Sea parasites into the Baltic Sea. However, the brackish water Baltic Sea nematodes Paracuaria adunca and Cosmocephalus obvelatus were found in R. rutilus from the canal, demonstrating the ability of some parasite species to invade and extend their range of distribution through this man-made shipping route from the Baltic to the North Sea.  相似文献   

17.
The Baltic Sea is a large brackish semienclosed sea whose species-poor fish community supports important commercial and recreational fisheries. Both the fish species and the fisheries are strongly affected by climate variations. These climatic effects and the underlying mechanisms are briefly reviewed. We then use recent regional – scale climate – ocean modelling results to consider how climate change during this century will affect the fish community of the Baltic and fisheries management. Expected climate changes in northern Europe will likely affect both the temperature and salinity of the Baltic, causing it to become warmer and fresher. As an estuarine ecosystem with large horizontal and vertical salinity gradients, biodiversity will be particularly sensitive to changes in salinity which can be expected as a consequence of altered precipitation patterns. Marine-tolerant species will be disadvantaged and their distributions will partially contract from the Baltic Sea; habitats of freshwater species will likely expand. Although some new species can be expected to immigrate because of an expected increase in sea temperature, only a few of these species will be able to successfully colonize the Baltic because of its low salinity. Fishing fleets which presently target marine species (e.g. cod, herring, sprat, plaice, sole) in the Baltic will likely have to relocate to more marine areas or switch to other species which tolerate decreasing salinities. Fishery management thresholds that trigger reductions in fishing quotas or fishery closures to conserve local populations (e.g. cod, salmon) will have to be reassessed as the ecological basis on which existing thresholds have been established changes, and new thresholds will have to be developed for immigrant species. The Baltic situation illustrates some of the uncertainties and complexities associated with forecasting how fish populations, communities and industries dependent on an estuarine ecosystem might respond to future climate change.  相似文献   

18.
The methods presently in wide use for the assessment of marine ecosystems and fish stocks cannot provide the high-quality long-term prognoses urgently needed for improved management of marine ecosystems and their fishery resources. A novel method of forecasting the long-term qualitative composition of ecosystem and fish stocks in the Baltic Sea based on the periodicity and succession of the processes: extraterrestrial factors????climate changes????regime forming factors (chiefly salinity and temperature)????ecosystems????fish stocks was used in 1989 to predict the approximate year class abundances of cod (Gadus morhua callarias), sprat (Sprattus sprattus balticus), sea herring and gulf herring (Clupea harengus membras) in the Baltic Sea for the years 1989?C2008. A comparison with actual development up to 2008 show that this prognosis was confirmed to a considerable extent. The method based on periodical fluctuations of freshwater input and the thermal regime is described. It predicts a new regime shift in the 2020s to a higher salinity and more acceptable conditions for the organisms of marine origin.  相似文献   

19.
Even if many Vibrio spp. are endemic to coastal waters, their distribution in northern temperate and boreal waters is poorly studied. To identify environmental factors regulating Vibrio populations in a salinity gradient along the Swedish coastline, we combined Vibrio-specific quantitative competitive PCR with denaturant gradient gel electrophoresis-based genotyping. The total Vibrio abundance ranged from 4 x 10(3) to 9.6 x 10(4) cells liter(-1), with the highest abundances in the more saline waters of the Skagerrak Sea. Several Vibrio populations were present throughout the salinity gradient, with abundances of single populations ranging from 5 x 10(2) to 7 x 10(4) cells liter(-1). Clear differences were observed along the salinity gradient, where three populations dominated the more saline waters of the Skagerrak Sea and two populations containing mainly representatives of V. anguillarum and V. aestuarianus genotypes were abundant in the brackish waters of the Baltic Sea. Our results suggest that this apparent niche separation within the genus Vibrio may also be influenced by alternate factors such as nutrient levels and high abundances of dinoflagellates. A V. cholerae/V. mimicus population was detected in more than 50% of the samples, with abundances exceeding 10(3) cells liter(-1), even in the cold (annual average water temperature of around 5 degrees C) and low-salinity (2 to 4 per thousand) samples from the Bothnian Bay (latitude, 65 degrees N). The unsuspected and widespread occurrence of this population in temperate and boreal coastal waters suggests that potential Vibrio pathogens may also be endemic to cold and brackish waters and hence may represent a previously overlooked health hazard.  相似文献   

20.
The Baltic Sea is one of the largest brackish environments on Earth. Despite extensive knowledge about food web interactions and pelagic ecosystem functioning, information about the bacterial community composition in the Baltic Sea is scarce. We hypothesized that due to the eutrophic low-salinity environment and the long water residence time (>5 years), the bacterioplankton community from the Baltic proper shows a native “brackish” composition influenced by both freshwater and marine phylotypes. The bacterial community composition in surface water (3-m depth) was examined at a single station throughout a full year. Denaturing gradient gel electrophoresis (DGGE) showed that the community composition changed over the year. Further, it indicated that at the four extensive samplings (16S rRNA gene clone libraries and bacterial isolates from low- and high-nutrient agar plates and seawater cultures), different bacterial assemblages associated with different environmental conditions were present. Overall, the sequencing of 26 DGGE bands, 160 clones, 209 plate isolates, and 9 dilution culture isolates showed that the bacterial assemblage in surface waters of the central Baltic Sea was dominated by Bacteroidetes but exhibited a pronounced influence of typical freshwater phylogenetic groups within Actinobacteria, Verrucomicrobia, and Betaproteobacteria and a lack of typical marine taxa. This first comprehensive analysis of bacterial community composition in the central Baltic Sea points to the existence of an autochthonous estuarine community uniquely adapted to the environmental conditions prevailing in this brackish environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号