首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a molecular weight of Mr=16,000. The amino acid composition of the toxin type K2 of S. cerevisiae strain 399 was determined and compared with the composition of two other toxins.  相似文献   

2.
Killer yeasts are considered potential biocontrol agents to avoid or reduce wine spoilage by undesirable species. In this study two Saccharomyces cerevisiae strains (Cf8 and M12) producing killer toxin were partially characterized and new strategies to improve their activity in winemaking were evaluated. Killer toxins were characterized by biochemical tests and growth inhibition of sensitive yeasts. Also genes encoding killer toxin were detected in the chromosomes of both strains by PCR. Both toxins showed optimal activity and production at conditions used during the wine-making process (pH 3.5 and temperatures of 15–25 °C). In addition, production of both toxins was higher when a nitrogen source was added. To improve killer activity different strategies of inoculation were studied, with the sequential inoculation of killer strains the best combination to control the growth of undesired yeasts. Sequential inoculation of Cf8–M12 showed a 45 % increase of killer activity on sensitive S. cerevisiae and spoilage yeasts. In the presence of ethanol (5–12 %) and SO2 (50 mg/L) the killer activity of both toxins was increased, especially for toxin Cf8. Characteristics of both killer strains support their future application as starter cultures and biocontrol agents to produce wines of controlled quality.  相似文献   

3.
Species of 7 of the 28 yeast genera in the National Collection of Yeast Cultures exhibited killing activity againstSaccharomyces cerevisiae. The highest incidence of killer yeasts was found in the genusHansenula (12 of the 29 strains examined).Saccharomyces, the best represented genus in the Collection, showed a low incidence of killer activity and many of the killer strains are hybrids with a commonS. cerevisiae parent. The activities of culture filtrates of the 59 killer yeast isolated responded differently to pH and four types of response were recognised.  相似文献   

4.

Background

Virus infected killer strains of the baker’s yeast Saccharomyces cerevisiae secrete protein toxins such as K28, K1, K2 and Klus which are lethal to sensitive yeast strains of the same or related species. K28 is somewhat unique as it represents an α/β heterodimeric protein of the A/B toxin family which, after having bound to the surface of sensitive target cells, is taken up by receptor-mediated endocytosis and transported through the secretory pathway in a retrograde manner. While the current knowledge on yeast killer toxins is largely based on genetic screens for yeast mutants with altered toxin sensitivity, in vivo imaging of cell surface binding and intracellular toxin transport is still largely hampered by a lack of fluorescently labelled and biologically active killer toxin variants.

Results

In this study, we succeeded for the first time in the heterologous K28 preprotoxin expression and production of fluorescent K28 variants in Pichia pastoris. Recombinant P. pastoris GS115 cells were shown to successfully process and secrete K28 variants fused to mCherry or mTFP by high cell density fermentation. The fluorescent K28 derivatives were obtained in high yield and possessed in vivo toxicity and specificity against sensitive yeast cells. In cell binding studies the resulting K28 variants caused strong fluorescence signals at the cell periphery due to toxin binding to primary K28 receptors within the yeast cell wall. Thereby, the β-subunit of K28 was confirmed to be the sole component required and sufficient for K28 cell wall binding.

Conclusion

Successful production of fluorescent killer toxin variants of S. cerevisiae by high cell density fermentation of recombinant, K28 expressing strains of P. pastoris now opens the possibility to study and monitor killer toxin cell surface binding, in particular in toxin resistant yeast mutants in which toxin resistance is caused by defects in toxin binding due to alterations in cell wall structure and composition. This novel approach might be easily transferable to other killer toxins from different yeast species and genera. Furthermore, the fluorescent toxin variants described here might likewise represent a powerful tool in future studies to visualize intracellular A/B toxin trafficking with the help of high resolution single molecule imaging techniques.
  相似文献   

5.
The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.  相似文献   

6.
Vector‐borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit‐colonizing yeast in a tripartite symbiosis—the so‐called “killer yeast” system. “Killer yeast” consists of Saccharomyces cerevisiae yeast hosting two double‐stranded RNA viruses (M satellite dsRNAs, L‐A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing “killer yeast” phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non‐killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.  相似文献   

7.
The kinetics and metabolic behavior of Kloeckera apiculata mc1 and Saccharomyces cerevisiae mc2 in composite culture was investigated. K. apiculata showed a higher viability through the fermentation; however the maximum cell density of both yeasts decreased. This behavior was not due to ethanol concentration, killer toxins production or competition for assimilable nitrogenous compounds between both yeasts. Despite the consistent production of secondary products by single culture of K. apiculata, an increase of these compounds was not observed in mixed culture. These results contribute to a better understanding of the behavior of non-Saccharomyces yeasts and their potential application in the wine industry.  相似文献   

8.
The interactions between 20 killer yeasts of various genera and species were examined. Ten distinct groups were recognised with respect to killer activity and 10 distinct groups with respect to resistance to killer action. Using both killing and resistance phenotypes, 13 classes of killer yeast were found. With the exception of Torulopsis glabrata NCYC 388, non-Saccharomyces strains of yeast were not killed by a member of the genus Saccharomyces.The killer character of the 3 killing groups of Saccharomyces identified could be cured by treatment with cycloheximide or incubation at elevated temperature and the effectiveness of these procedures was indicative of the category of killer yeast examined. Killer yeasts not belonging to the genus Saccharomyces could not be cured of their activity. Double-stranded ribonucleic acids were extracted only from Saccharomyces spp. and the molecular weights of the species present were a function of the killer class to which a strain belonged.By an analysis of the effects of proteolytic enzymes, temperature and pH on killer activity and by gel chromatography of crude preparations of killer factors, the toxins of different killer classes were shown to be biochemically distinct. However all toxins had certain properties in common consistent with there being a protein component essential to killer action.  相似文献   

9.
Summary A cDNA copy of the M2 dsRNA encoding the K2 killer toxin ofSaccharomyces cerevisiae was expressed in yeast using the yeastADH1 promoter. This construct produced K2-specific killing and immunity functions. Efficient K2-specific killing was dependent on the action of the KEX2 endopeptidase and the KEX1 carboxypeptidase, while K2-specific immunity was independent of these proteases. Comparison of the K2 toxin sequence with that of the K1 toxin sequence shows that although they share a common processing pathway and are both encoded by cytoplasmic dsRNAs of similar basic structure, the two toxins are very different at the primary sequence level. Site-specific mutagenesis of the cDNA gene establishes that one of the two potential KEX2 cleavage sites is critical for toxin action but not for immunity. Immunity was reduced by an insertion of two amino acids in the hydrophobic amino-terminal region which left toxin activity intact, indicating an independence of toxin action and immunity.  相似文献   

10.
Killer yeasts secrete protein toxins that are lethal to sensitive strains of the same or related yeast species. Among the four types of Saccharomyces killer yeasts already described (K1, K2, K28, and Klus), we found K2 and Klus killer yeasts in spontaneous wine fermentations from southwestern Spain. Both phenotypes were encoded by medium-size double-stranded RNA (dsRNA) viruses, Saccharomyces cerevisiae virus (ScV)-M2 and ScV-Mlus, whose genome sizes ranged from 1.3 to 1.75 kb and from 2.1 to 2.3 kb, respectively. The K2 yeasts were found in all the wine-producing subareas for all the vintages analyzed, while the Klus yeasts were found in the warmer subareas and mostly in the warmer ripening/harvest seasons. The middle-size isotypes of the M2 dsRNA were the most frequent among K2 yeasts, probably because they encoded the most intense K2 killer phenotype. However, the smallest isotype of the Mlus dsRNA was the most frequent for Klus yeasts, although it encoded the least intense Klus killer phenotype. The killer yeasts were present in most (59.5%) spontaneous fermentations. Most were K2, with Klus being the minority. The proportion of killer yeasts increased during fermentation, while the proportion of sensitive yeasts decreased. The fermentation speed, malic acid, and wine organoleptic quality decreased in those fermentations where the killer yeasts replaced at least 15% of a dominant population of sensitive yeasts, while volatile acidity and lactic acid increased, and the amount of bacteria in the tumultuous and the end fermentation stages also increased in an unusual way.  相似文献   

11.
The yeast strain Pichia anomala DBVPG 3003 secretes a killer toxin (Pikt) that has antifungal activity against Brettanomyces/Dekkera sp. yeasts. Pikt interacts with β-1,6-glucan, consistent with binding to the cell wall of sensitive targets. In contrast to that of toxin K1, secreted by Saccharomyces cerevisiae, Pikt killer activity is not mediated by an increase in membrane permeability. Purification of the toxin yielded a homogeneous protein of about 8 kDa, which showed a marked similarity to ubiquitin in terms of molecular mass and N-terminal sequences. Pikt is also specifically recognized by anti-bovine ubiquitin antibodies and, similar to ubiquitin-like peptides, is not absorbed by DEAE-cellulose. However, Pikt differs from ubiquitin in its sensitivity to proteolytic enzymes. Therefore, Pikt appears to be a novel ubiquitin-like peptide that has killer activity.  相似文献   

12.

Background

Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts.

Principal Findings

We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility.

Significance

Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action.  相似文献   

13.
G. I. Naumov 《Microbiology》2013,82(4):397-403
The review deals with the early studies of Saccharomyces paradoxus (syn. S. cerevisiae var. tetrasporus) yeast. The data demonstrate strong evidence that, in contrast to the well-known cultivated Saccharomyces yeasts (baker, wine, spirits, and beer yeast), wild Saccharomyces yeasts are often found in natural habitats, such as exudate and leaf litter of trees, decaying wood, soil, and insect intestines. These yeasts form a potentially valuable gene pool for research and breeding programs.  相似文献   

14.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   

15.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   

16.
Using simultaneous fusion of protoplasts of three strains the auxotrophic K3 killer designated MH1 was prepared at a very low frequency and further employed for the transfer of the K3 killer character into a commercial wine yeast. A novelSaccharomyces Bratislava 1K3 strain with desirable technological and anti-yeast killer abilities was thus constructed. Attempts to prepare double K1/K3 killers were made. The obtained fusion products contained M1 dsRNA and were able to produce only the K1 type killer toxin.  相似文献   

17.
Microbes have evolved ways of interference competition to gain advantage over their ecological competitors. The use of secreted killer toxins by yeast cells through acquiring double‐stranded RNA viruses is one such prominent example. Although the killer behaviour has been well studied in laboratory yeast strains, our knowledge regarding how killer viruses are spread and maintained in nature and how yeast cells co‐evolve with viruses remains limited. We investigated these issues using a panel of 81 yeast populations belonging to three Saccharomyces sensu stricto species isolated from diverse ecological niches and geographic locations. We found that killer strains are rare among all three species. In contrast, killer toxin resistance is widespread in Saccharomyces paradoxus populations, but not in Saccharomyces cerevisiae or Saccharomyces eubayanus populations. Genetic analyses revealed that toxin resistance in S. paradoxus is often caused by dominant alleles that have independently evolved in different populations. Molecular typing identified one M28 and two types of M1 killer viruses in those killer strains. We further showed that killer viruses of the same type could lead to distinct killer phenotypes under different host backgrounds, suggesting co‐evolution between the viruses and hosts in different populations. Taken together, our data suggest that killer viruses vary in their evolutionary histories even within closely related yeast species.  相似文献   

18.
By heat treatment killer strains of the type K1 of Saccharomyces cerevisiae that are known to harbour dsRNA plasmids were completely cured, whereas only a small fraction of the clones of the killer type K2 had lost the dsRNA dependent killer character. The K2 killers but not the strains of killer type K1 were easily cured by cycloheximide. Killer strains of Hanseniaspora uvarum were not curable by heat treatment. Curing was successfull with cycloheximide or 5-fluorouracil. Two double-stranded RNA plasmids were detected in the killer strains of H. uvarum. The smaller dsRNA plasmid was absent in the strains that were cured of their killer character by 5-fluorouracil. The killer character of H. uvarum was transferred to S. cerevisiae by spheroplast fusion. The fusion products showing the killer character contained both dsRNA plasmids, obviously the smaller plasmid (M-dsRNA) carries the genes for killer toxin formation. Killer strains of Pichia kluyveri were not curable of their killer character, in these strains no dsRNA plasmids were detected.This paper was kindly supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

19.
Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.  相似文献   

20.
Yeast ecology, biogeography and biodiversity are important and interesting topics of research. The population dynamics of yeasts in several cellars of two Spanish wine-producing regions was analysed for three consecutive years (1996 to 1998). No yeast starter cultures had been used in these wineries which therefore provided an ideal winemaking environment to investigate the dynamics of grape-related indigenous yeast populations. Non-Saccharomyces yeast species were identified by RFLPs of their rDNA, while Saccharomyces species and strains were identified by RFLPs of their mtDNA. This study confirmed the findings of other reports that non-Saccharomyces species were limited to the early stages of fermentation whilst Saccharomyces dominated towards the end of the alcoholic fermentation. However, significant differences were found with previous studies, such as the survival of non-Saccharomyces species in stages with high alcohol content and a large variability of Saccharomyces strains (a total of 112, all of them identified as Saccharomyces cerevisiae) with no clear predominance of any strain throughout all the fermentation, probably related to the absence of killer phenotype and lack of previous inoculation with commercial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号