共查询到20条相似文献,搜索用时 11 毫秒
1.
Ryan B. Stephens Erik A. Hobbie Thomas D. Lee Rebecca J. Rowe 《Ecology and evolution》2019,9(18):10681-10693
Identifying the mechanisms that structure niche breadth and overlap between species is important for determining how species interact and assessing their functional role in an ecosystem. Without manipulative experiments, assessing the role of foraging ecology and interspecific competition in structuring diet is challenging. Systems with regular pulses of resources act as a natural experiment to investigate the factors that influence the dietary niches of consumers. We used natural pulses of mast‐fruiting of American beech (Fagus grandifolia) to test whether optimal foraging or competition structure the dietary niche breadth and overlap between two congener rodent species (Peromyscus leucopus and P. maniculatus), both of which are generalist consumers. We reconstructed diets seasonally over a 2‐year period using stable isotope analysis (δ13C, δ15N) of hair and of potential dietary items and measured niche dynamics using standard ellipse area calculated within a Bayesian framework. Changes in niche breadth were generally consistent with predictions of optimal foraging theory, with both species consuming more beechnuts (a high‐quality food resource) and having a narrower niche breadth during masting seasons compared to nonmasting seasons when dietary niches expanded and more fungi (a low‐quality food source) were consumed. In contrast, changes in dietary niche overlap were consistent with competition theory, with higher diet overlap during masting seasons than during nonmasting seasons. Overall, dietary niche dynamics were closely tied to beech masting, underscoring that food availability influences competition. Diet plasticity and niche partitioning between the two Peromyscus species may reflect differences in foraging strategies, thereby reducing competition when food availability is low. Such dietary shifts may have important implications for changes in ecosystem function, including the dispersal of fungal spores. 相似文献
2.
Roberto NovellaFernandez Carlos Ibaez Javier Juste Elizabeth L. Clare C. Patrick Doncaster Orly Razgour 《Ecology and evolution》2020,10(24):14122
Understanding the processes that enable species coexistence has important implications for assessing how ecological systems will respond to global change. Morphology and functional similarity increase the potential for competition, and therefore, co‐occurring morphologically similar but genetically unique species are a good model system for testing coexistence mechanisms. We used DNA metabarcoding and high‐throughput sequencing to characterize for the first time the trophic ecology of two recently described cryptic bat species with parapatric ranges, Myotis escalerai and Myotis crypticus. We collected fecal samples from allopatric and sympatric regions and from syntopic and allotopic locations within the sympatric region to describe the diets both taxonomically and functionally and compare prey consumption with prey availability. The two bat species had highly similar diets characterized by high arthropod diversity, particularly Lepidoptera, Diptera and Araneae, and a high proportion of prey that is not volant at night, which points to extensive use of gleaning. Diet overlap at the prey item level was lower in syntopic populations, supporting trophic shift under fine‐scale co‐occurrence. Furthermore, the diet of M. escalerai had a marginally lower proportion of not nocturnally volant prey in syntopic populations, suggesting that the shift in diet may be driven by a change in foraging mode. Our findings suggest that fine‐scale coexistence mechanisms can have implications for maintaining broad‐scale diversity patterns. This study highlights the importance of including both allopatric and sympatric populations and choosing meaningful spatial scales for detecting ecological patterns. We conclude that a combination of high taxonomic resolution with a functional approach helps identify patterns of niche shift. 相似文献
3.
Distinct seasonal variations in the abundance of photosynthetic microbiota and limpet grazing intensity were recorded at Port St Mary, Isle of Man between January 1994 and June 1996. Microbial abundance was negatively correlated with insolation stress, while grazing intensity was positively correlated with sea and air temperature. These patterns result in a mis-match between the supply of and the demand for microbial resources with maximal grazing intensity during the summer and autumn, but maximal microbial standing stock during the winter and early spring. The importance of top-down control of microbial assemblages by grazing was demonstrated by experimental exclusion of limpets during autumn 1993. This resulted in a four-fold increase in the abundance of cyanobacteria within 6 days, followed by a more gradual proliferation of ephemeral algae during the next 4 weeks. The abundance of diatoms remained relatively constant and was not influenced by the removal of grazers at this time of year. The influence of microbial resource availability on the growth and mortality of limpets was examined using experimental enclosures of differing densities of either Patella vulgata or P. depressa. After 6 months, there were significant relationships between grazer density and both mortality and growth with increased mortality and reduced growth for P. vulgata at increased densities, and reduced growth for P. depressa at increased densities. Hence, the availability of microbial resources may also influence the biomass of grazers on rocky shores from the bottom upwards. A conceptual model is presented which describes seasonal and annual variations in microbial resources and grazing intensity and their potential consequences for other shore dwellers. 相似文献
4.
5.
How the coexistence of species is affected by the presence of multiple resources is a major question in microbial ecology. We experimentally demonstrate that differences in diauxic lags, which occur as species deplete their own environments and adapt their metabolisms, allow slow‐growing microbes to stably coexist with faster‐growing species in multi‐resource environments despite being excluded in single‐resource environments. In our focal example, an Acinetobacter species (Aci2) competitively excludes Pseudomonas aurantiaca (Pa) on alanine and on glutamate. However, they coexist on the combination of both resources. Experiments reveal that Aci2 grows faster but Pa has shorter diauxic lags. We establish a tradeoff between Aci2’s fast growth and Pa’s short lags as their mechanism for coexistence. We model this tradeoff to accurately predict how environmental changes affect community composition. We extend our work by surveying a large set of competitions and observe coexistence nearly four times as frequently when the slow‐grower is the fast‐switcher. Our work illustrates a simple mechanism, based entirely on supplied‐resource growth dynamics, for the emergence of multi‐resource coexistence. 相似文献
6.
Yang Chang Shengjing Song Aoqiang Li Yu Zhang Zhongle Li Yanhong Xiao Tinglei Jiang Jiang Feng Aiqing Lin 《Molecular ecology》2019,28(11):2944-2954
Niche expansion and shifts are involved in the response and adaptation to environmental changes. However, it is unclear how niche breadth evolves and changes toward higher‐quality resources. Myotis pilosus is both an insectivore and a piscivore. We examined the dietary composition and seasonality in M. pilosus and the closely related Myotis fimbriatus using next‐generation DNA sequencing. We tested whether resource variation or resource partitioning help explain the dietary expansion from insects to fish in M. pilosus. While diet composition and diversity varied significantly between summer and autumn, the proportion of fish‐eating individuals did not significantly change between seasons in M. pilosus. Dietary overlap between M. pilosus and M. fimbriatus during the same seasons was much higher than within individual species across seasons. We recorded a larger body size, hind foot length, and body mass in M. pilosus than in M. fimbriatus and other insectivorous trawling bats from China. Similar morphological differences were found between worldwide fishing bats and nonfishing trawling bats. Our results suggest that variation in insect availability or interspecific competition may not play important roles in the dietary expansion from insects to fish in M. pilosus. Myotis pilosus has morphological advantages that may help it use fish as a diet component. The morphological advantage promoting dietary niche evolution toward higher quality resources may be more important than variation in the original resource and the effects of interspecific competition. 相似文献
7.
The diet and ontogenetic partitioning of the Australian weasel shark Hemigaleus australiensis was examined in Moreton Bay, south-east Queensland, Australia. The index of relative importance ( I RI ) revealed a highly specialized diet, consisting entirely of cephalopod molluscs (99·6% I RI ) and crustaceans (0·4% I RI ). Benthic octopus (Octopoda) dominated the diet, accounting for 96·7% I RI . A highly significant difference was found between the stomach contents of juvenile and sub-adult and adult Australian weasel sharks. Dietary specialization increased with ontogeny and fish ≥1000 mm in total length ( L T ) fed almost exclusively on octopus (98% I RI ). A highly significant difference was found between the L T of Australian weasel sharks from coral and sand and seagrass sites. At the coral site 75·4% of fish were mature while at the sand and seagrass site only 16·1% were mature. This spatial segregation may be attributed to shifting energy requirements associated with ontogeny and the relative abundance of large octopus at the coral site. Hemigaleus australiensis resides in an area of high shark diversity and its specialized cephalopod diet may reduce competition for food with other Carcharhiniformes whose prey comprises predominantly teleosts. 相似文献
8.
Habitat and resource partitioning among Indo‐Pacific bottlenose dolphins in Moreton Bay,Australia 下载免费PDF全文
Ina C. Ansmann Janet M. Lanyon Jennifer M. Seddon Guido J. Parra 《Marine Mammal Science》2015,31(1):211-230
Investigating resource partitioning among mobile marine predators such as cetaceans is challenging. Here we integrate multiple methodologies (analyses of habitat use, stable isotopes and trace elements) to assess ecological niche partitioning amongst two genetically divergent sympatric subpopulations (North and South) of Indo‐Pacific bottlenose dolphins (Tursiops aduncus) in Moreton Bay, Australia. Comparisons of the mean locations (latitude, longitude) and environmental variables (distance from sandbanks, distance from shore and water depth) observed at sightings of biopsy‐sampled individuals indicated that the North subpopulation occurred in the northwestern bay in significantly deeper water than the South subpopulation, which was found in southeastern nearshore waters and closer to sandbanks. Ratios of stable carbon and nitrogen isotopes in skin samples suggested that North dolphins foraged on higher trophic level prey in relatively more pelagic, offshore habitats, while South dolphins foraged on lower trophic prey in more nearshore, demersal and/or benthic habitats. Habitat partitioning was also reflected in higher blubber concentrations of most of the 13 measured trace elements, in particular lead, in the coastal South compared to the more pelagic North dolphins. These findings indicate that genetic subpopulations of bottlenose dolphins in Moreton Bay are adapted to different niches. 相似文献
9.
Abstract. 1. Laboratory experiments and field studies were conducted to explain the coexistence of an endoparasitoid, Encarsia perniciosi Tower, and an ectoparasitoid, Aphytis melinus DeBach, both of which were introduced into California to control the California red scale, Aonidiella aurantii (Mask.).
2. Encarsia parasitized all scale stages but it preferred first and second instar scales. This is in contrast to Aphytis melinus , in which previous studies have shown that it parasitizes second and third instar females and second instar males but prefers third instar female scales. Encarsia developed most rapidly when it parasitized an early second instar and slowest when it parasitized the mature female scale. However, on early second instar scales it was about 80% as fecund as a wasp that emerged from a mature female scale.
3. Second instar scales parasitized by Encarsia were accepted by Aphytis as readily as unparasitized scales.
4. Encarsia did not distinguish between unparasitized hosts and those previously parasitized by Aphytis.
5. Encarsia always outcompeted by Aphytis when both species parasitize the same host.
6. Encarsia prefers scale on stems whereas Aphytis prefers those on leaves and fruits. This, too, may be a result of interspecific competition with Aphytis.
7. The partitioning of the scale resource by the two species explains why they coexist in coastal southern California but it does not explain why Encarsia disappeared from citrus groves in the inland valleys coincident with the introduction of Aphytis melinus into southern California. 相似文献
2. Encarsia parasitized all scale stages but it preferred first and second instar scales. This is in contrast to Aphytis melinus , in which previous studies have shown that it parasitizes second and third instar females and second instar males but prefers third instar female scales. Encarsia developed most rapidly when it parasitized an early second instar and slowest when it parasitized the mature female scale. However, on early second instar scales it was about 80% as fecund as a wasp that emerged from a mature female scale.
3. Second instar scales parasitized by Encarsia were accepted by Aphytis as readily as unparasitized scales.
4. Encarsia did not distinguish between unparasitized hosts and those previously parasitized by Aphytis.
5. Encarsia always outcompeted by Aphytis when both species parasitize the same host.
6. Encarsia prefers scale on stems whereas Aphytis prefers those on leaves and fruits. This, too, may be a result of interspecific competition with Aphytis.
7. The partitioning of the scale resource by the two species explains why they coexist in coastal southern California but it does not explain why Encarsia disappeared from citrus groves in the inland valleys coincident with the introduction of Aphytis melinus into southern California. 相似文献
10.
Juliet S. Lamb Peter W. C. Paton Jason E. Osenkowski Shannon S. Badzinski Alicia M. Berlin Tim Bowman Chris Dwyer Luke J. Fara Scott G. Gilliland Kevin Kenow Christine Lepage Mark L. Mallory Glenn H. Olsen Matthew C. Perry Scott A. Petrie Jean-Pierre L. Savard Lucas Savoy Michael Schummer Caleb S. Spiegel Scott R. McWilliams 《Ecography》2020,43(12):1842-1858
Long-distance migration presents complex conservation challenges, and migratory species often experience shortfalls in conservation due to the difficulty of identifying important locations and resources throughout the annual cycle. In order to prioritize habitats for conservation of migratory wildlife, it is necessary to understand how habitat needs change throughout the annual cycle, as well as to identify key habitat sites and features that concentrate large numbers of individuals and species. Among long-distance migrants, sea ducks have particularly complex migratory patterns, which often include distinct post-breeding molt sites as well as breeding, staging and wintering locations. Using a large set of individual tracking data (n = 476 individuals) from five species of sea ducks in eastern North America, we evaluated multi-species habitat suitability and partitioning across the breeding, post-breeding migration and molt, wintering and pre-breeding migration seasons. During breeding, species generally occupied distinct habitat areas, with the highest levels of multi-species overlap occurring in the Barrenlands west of Hudson Bay. Species generally preferred flatter areas closer to lakes with lower maximum temperatures relative to average conditions, but varied in distance to shore, elevation and precipitation. During non-breeding, species overlapped extensively during winter but diverged during migration. All species preferred shallow-water, nearshore habitats with high productivity, but varied in their relationships to salinity, temperature and bottom slope. Sea ducks selected most strongly for preferred habitats during post-breeding migration, with high partitioning among species; however, both selection and partitioning were weaker during pre-breeding migration. The addition of tidal current velocity, aquatic vegetation presence and bottom substrate improved non-breeding habitat models where available. Our results highlight the utility of multi-species, annual-cycle habitat assessments in identifying key habitat features and periods of vulnerability in order to optimize conservation strategies for migratory wildlife. 相似文献
11.
José A. Alves Tómas G. Gunnarsson Peter M. Potts William J. Sutherland Jennifer A. Gill 《Ecology and evolution》2013,3(4):1079-1090
In migratory species, sexual size dimorphism can mean differing energetic requirements for males and females. Differences in the costs of migration and in the environmental conditions occurring throughout the range may therefore result in sex‐biases in distribution and resource use at different spatial scales. In order to identify the scale at which sexual segregation operates, and thus the scale at which environmental changes may have sex‐biased impacts, we use range‐wide tracking of individually color‐ringed Icelandic black‐tailed godwits (Limosa limosa islandica) to quantify sexual segregation at scales ranging from the occupation of sites throughout the non‐breeding range to within‐site differences in distribution and resource use. Throughout the range of this migratory shorebird, there is no evidence of large‐scale sex differences in distribution during the non‐breeding season. However, the sexes differ in their selection of prey types and sizes, which results in small‐scale sexual segregation within estuaries. The scale of sexual segregation therefore depends on the scale of variation in resource distribution, which, in this system, is primarily within estuaries. Sexual segregation in within‐site distribution and resource use means that local‐scale anthropogenic impacts on estuarine benthic prey communities may disproportionately affect the sexes in these migratory shorebirds. 相似文献
12.
Five species of flatfishes in a tropical bay in south-eastern Brazil were studied to test the hypothesis that resource partitioning along the spatial and size dimensions has been used as a mechanism to enable coexistence. Three zones in the study area were defined according to environmental characteristics (inner, middle and outer). Sampling was conducted by otter trawl tows during daylight hours, between October 1998 and September 1999. Achiridae species ( Achirus lineatus and Trinectes paulistanus ) showed narrow niche width, indicating a specialized feeding strategy, preying on Polychaeta, and occurring mainly in the inner bay zone. Paralichthyidae ( Citharichthys spilopterus and Etropus crossotus ) and the Cynoglossidae ( Symphurus tessellatus ) showed broad niche width and a generalized feeding strategy preying on a large number of Crustacea. Symphurus tessellatus did not change diet with size-dimension feeding on Amphipoda and Polychaeta, whereas C. spilopterus and E. crossotus shifted diet with growth. Citharichthys spilopterus fed mainly on Mysida and secondarily on shrimps, with juvenile preying on large amounts of Calanoida, whereas adults consumed large amounts of fishes. Isaeidae amphipods were a significant prey for both small and large E. crossotus , whereas Polychaeta Errantia were used mainly by large fishes. Etropus crossotus and S. tessellatus share similar feeding resources in outer bay zone preying on Isaeidae and Polychaeta Errantia. Differences in the Pleuronectiformes diet composition along with spatial and size changes in the use of the available resources contributed to allow the organisms' coexistence in Sepetiba Bay. The high item diversity used by flatfishes indicates that the system plays an important role as a feeding ground, and that interspecific competition for food was unlikely. 相似文献
13.
Sex‐specific winter distribution in a sexually dimorphic shorebird is explained by resource partitioning 下载免费PDF全文
Sjoerd Duijns Jan A. van Gils Bernard Spaans Job ten Horn Maarten Brugge Theunis Piersma 《Ecology and evolution》2014,4(20):4009-4018
Sexual size dimorphism (SSD) implies correlated differences in energetic requirements and feeding opportunities, such that sexes will face different trade‐offs in habitat selection. In seasonal migrants, this could result in a differential spatial distribution across the wintering range. To identify the ecological causes of sexual spatial segregation, we studied a sexually dimorphic shorebird, the bar‐tailed godwit Limosa lapponica, in which females have a larger body and a longer bill than males. With respect to the trade‐offs that these migratory shorebirds experience in their choice of wintering area, northern and colder wintering sites have the benefit of being closer to the Arctic breeding grounds. According to Bergmann's rule, the larger females should incur lower energetic costs per unit of body mass over males, helping them to winter in the cold. However, as the sexes have rather different bill lengths, differences in sex‐specific wintering sites could also be due to the vertical distribution of their buried prey, that is, resource partitioning. Here, in a comparison between six main intertidal wintering areas across the entire winter range of the lapponica subspecies in northwest Europe, we show that the percentage of females between sites was not correlated with the cost of wintering, but was positively correlated with the biomass in the bottom layer and negatively with the biomass in the top layer. We conclude that resource partitioning, rather than relative expenditure advantages, best explains the differential spatial distribution of male and female bar‐tailed godwits across northwest Europe. 相似文献
14.
15.
Dominance hierarchies and the resulting unequal resource partitioning among individuals are key mechanisms of population regulation. The strength of dominance hierarchies can be influenced by size‐dependent tradeoffs between foraging and predator avoidance whereby competitively inferior subdominants can access a larger proportion of limiting resources by accepting higher predation risk. Foraging‐predation risk tradeoffs also depend on resource abundance. Yet, few studies have manipulated predation risk and resource abundance simultaneously; consequently, their joint effect on resource partitioning within dominance hierarchies are not well understood. We addressed this gap by measuring behavioural responses of masu salmon Oncorhynchus masou ishikawae to experimental manipulations of predation risk and resource abundance in a natural temperate forest stream. Responses to predation risk depended on body size and social status such that larger fish (often social dominants) exhibited more risk‐averse behaviour (e.g. lower foraging and appearance rates) than smaller subdominants after exposure to a simulated predator. The magnitude of this effect was lower when resources were elevated, indicating that dominant fish accepted a higher predation risk to forage on abundant resources. However, the influence of resource abundance did not extend to the population level, where predation risk altered the distribution of foraging attempts (a proxy for energy intake) from being skewed towards large individuals to being skewed towards small individuals after predator exposure. Our results imply that size‐dependent foraging–predation risk tradeoffs can weaken the strength of dominance hierarchies by allowing competitively inferior subdominants to access resources that would otherwise be monopolized. 相似文献
16.
Food resource partitioning between similar‐sized, sympatric Atlantic salmon Salmo salar and brook trout Salvelinus fontinalis was examined as a possible mechanism enabling their coexistence in a stream (Allaire) of the Sainte‐Marguerite River ecosystem, Quebec, Canada. Fish stomach contents and invertebrate drift were collected concurrently during three diel cycles in August to September 1996. The food and feeding habits of an allopatric brook trout population in a nearby stream (Epinette) were studied for comparison. The diel feeding rhythms of the two coexisting fish species were similar. The composition of their diet, however, showed significant differences. Atlantic salmon predominantly (60–90%) fed on aquatic insects, mainly Ephemeroptera (35–60% of the diet). The brook trout mostly (50–80%) fed upon the allochthonous terrestrial insects (mainly adults of Coleoptera, Hymenoptera and Diptera) which comprised 5–40% of the stream drift. The allopatric brook trout fed opportunistically on the more abundant aquatic insects and terrestrial insects rarely formed 25% of its diet. The allopatric trout fed nearly twice as much as the sympatric brook trout during a day. The results suggest that the differences in feeding by brook trout in the two streams (with and without Atlantic salmon) are the result of inter‐specific interaction with Atlantic salmon and are not related to the differences in food availability between the two streams. Food resource partitioning between Atlantic salmon and brook trout may be viewed as an adaptive response resulting in a greater exploitation of available resources and coexistence. 相似文献
17.
Differences in the selection of habitat and specific dietary items support resource partitioning and coexistence of sympatric African grazing herbivores, such as zebra and wildebeest. In Maputo Special Reserve (MSR), southern Mozambique, these two species were extirpated during the civil war (1977–1992); since 2010, they have been reintroduced into the Reserve. Identifying the resource selection by reintroduced species and how these species coexist, while utilising the same resources, is both of ecological interest and important for the management of wildlife communities and parks. This is a key application of our research. Therefore, the present study investigated resource partitioning between Burchell's zebra (Equus burchelli, Smuts 1832) and blue wildebeest (Connochaetes taurinus, Burchell 1823) in the MSR. We conducted the study from July 2016 to June 2017. The data were collected by direct observation, driving the vehicle along the reserve's roads that covered the vegetation communities where zebras and wildebeest are known to commonly occur. The composition of the diet and specific features of the grass grazed by the two species, including greenness, height, and the number of stems, were assessed. The widely available grass, Aristida barbicollis, contributed most to the diet of both herbivores. The dietary overlap between the two herbivores was higher during the dry season (95%) than wet season (86%). Resources partitioning appears to be determined, principally, by the height and greenness of the grass, with the zebra grazing taller grass, which may facilitate the access of the wildebeest to the greener, lower proportion of the forage. That results follow the expectation that, among native herbivores, overlap in resource use is not expected based on evolutionary segregation. 相似文献
18.
Many parasitoid species use olfactory cues to locate their hosts. In tritrophic systems, parasitoids of herbivores can exploit the chemical blends emitted by plants in reaction to herbivore‐induced damage, known as herbivore‐induced plant volatiles (HIPVs). In this study, we explored the specificity and innateness of parasitoid responses to HIPVs using a meta‐analysis of data from the literature. Based on the concept of dietary specialization and infochemical use, we hypothesized that (i) specialist parasitoids (i.e., with narrow host ranges) should be attracted to specific HIPV signals, whereas generalist parasitoids (i.e., with broad host ranges) should be attracted to more generic HIPV signals and (ii) specialist parasitoids should innately respond to HIPVs, whereas generalist parasitoids should have to learn to associate HIPVs with host presence. We characterized the responses of 66 parasitoid species based on published studies of parasitoid behavior. Our meta‐analysis showed that (i) as predicted, specialist parasitoids were attracted to more specific signals than were generalist parasitoids but, (ii) contrary to expectations, response innateness depended on a parasitoid's target host life stage rather than on its degree of host specialization: parasitoids of larvae were more likely to show an innate response to HIPVs than were parasitoids of adults. This result changes our understanding of dietary specialization and highlights the need for further theoretical research that will help clarify infochemical use by parasitoids. 相似文献
19.
1. Climatic variation outside the breeding season affects fluctuations in population numbers of seabirds and marine mammals. A challenge in identifying the underlying biological mechanisms is the lack of information on their foraging strategies during winter, when individuals migrate far from their breeding grounds. 2. We investigated the temporal variability in resource partitioning within the guild of five sympatric Subantarctic penguins and fur seals from Crozet Islands. The stable isotopic ratios of carbon (delta(13)C) and nitrogen (delta(15)N) for whole blood were measured for penguins and fur seals, as were the isotopic ratios for penguin nails and food. Animals were sampled at two periods, during breeding in summer and at their arrival in the colonies in spring (hereafter winter, since the temporal integration of blood amounting to several months). 3. In summer, delta(13)C and delta(15)N for blood samples defined three foraging areas and two trophic levels, respectively, characterizing four nonoverlapping trophic niches. King penguins and female Antarctic and Subantarctic fur seals are myctophid eaters foraging in distinct water masses, while both macaroni and rockhopper penguins had identical isotopic signatures indicating feeding on crustaceans near the archipelago. 4. Isotopic ratios were almost identical in summer and winter suggesting no major changes in the species niches, and hence, in the trophic structure of the guild during the nonbreeding period. A seasonal difference, however, was the larger variances in delta(13)C (and also to a lesser extent in delta(15)N) values in winter, thus verifying our hypothesis that trophic niches widen when individuals are no longer central place foragers. 5. Winter isotopic ratios of macaroni penguins and male Antarctic fur seals had large variances, indicating individual foraging specializations. The range of delta(13)C and delta(15)N values of male fur seals showed, respectively, that they dispersed over a wide latitudinal gradient (from Antarctica to north of the archipelago) and fed on different prey (crustaceans and fish). 6. By comparing summer and winter isotopic ratios and examining the summer diet, we highlight the feeding habits of marine predators that were not previously addressed. The findings have a number of implications for understanding the functioning of the pelagic ecosystem and on the demography of these species. 相似文献
20.
Microhabitat selectivity, resource partitioning, and niche shifts in five species of grazing caddisfly larvae (Glossosoma califica, G. penitum, Dicosmoecus gilvipes, Neophylax rickeri, and N. splendens) were quantified by underwater measurement of microhabitat availability and utilization in three northern California streams. The microhabitat parameters water depth and velocity and rock size, roughness, and slope were measured. Comparisons of habitat available to habitat used revealed significant selection for at least two microhabitat parameters by each population, with depth and velocity being the most important. Comparisons of habitat used by different species showed significant partitioning of at least two microhabitat parameters at each site, with depth being partitioned at all sites. Non-parametric discriminant analysis revealed significant microhabitat partitioning on a multivariate level at two sites. Comparisons of habitat used at different sites quantified a major niche shift by D. gilvipes in its preference for riffles versus pools. Size-selective predation by dippers (Cinclus mexicanus) and steelhead (Salmo gairdneri gairdneri) is proposed as a hypothesis to explain the observed resource partitioning and niche shift. 相似文献