首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of intravenous (IV) lidocaine, dexmedetomidine and their combination delivered as a bolus followed by a constant rate infusion (CRI) on the minimum alveolar concentration of isoflurane (MACISO) in dogs were evaluated. Seven healthy adult dogs were included. Anaesthesia was induced with propofol and maintained with isoflurane. For each dog, baseline MAC (MACISO/BASAL) was determined after a 90-minute equilibration period. Thereafter, each dog received one of the following treatments (loading dose, CRI): lidocaine 2 mg kg−1, 100 µg kg−1 minute−1; dexmedetomidine 2 µg kg−1, 2 µg kg−1 hour−1; or their combination. MAC was then determined again after 45- minutes of treatment by CRI. At the doses administered, lidocaine, dexmedetomidine and their combination significantly reduced MACISO by 27.3% (range: 12.5–39.2%), 43.4% (33.3–53.3%) and 60.9% (46.1–78.1%), respectively, when compared to MACISO/BASAL. The combination resulted in a greater MACISO reduction than the two drugs alone. Their use, at the doses studied, provides a clinically important reduction in the concentration of ISO during anaesthesia in dogs.  相似文献   

2.
The aim of this study was to evaluate the mutagenicity (clastogenicity/aneugenicity) of a glycolic extract of Ziziphus joazeiro bark (GEZJ) by the micronucleus assay in mice bone marrow. Antimutagenic activity was also assessed using treatments associated with GEZJ and doxorubicin (DXR). Mice were evaluated 24–48 h after exposure to positive (N-nitroso-N-ethylurea, NEU - 50 mg.kg−1 and DXR - 5 mg.kg−1) and negative (150 mM NaCl) controls, as well as treatment with GEZJ (0.5–2 g.kg−1), GEZJ (2 g.kg−1) + NEU and GEZJ (2 g.kg−1) + DXR. There were no significant differences in the frequencies of micronucleated polychromatic erythrocytes in mice treated with GEJZ and GEJZ + DXR compared to the negative controls, indicating that GEZJ was not mutagenic. Analysis of the polychromatic:normochromatic erythrocyte ratio revealed significant differences in the responses to doses of 0.5 g.kg−1 and 1–2 g.kg−1 and the positive control (NEU). These results indicated no systemic toxicity and moderate toxicity at lower and higher doses of GEZJ. The lack of mutagenicity and systemic toxicity in the antimutagenic assays, especially for treatment with GEZJ + DXR, suggested that phytochemical compounds in Z. joazeiro bark attenuated DXR-induced mutagenicity and the moderate systemic toxicity of a high dose of Z. joazeiro bark (2 g.kg−1). Further studies on the genotoxicity of Z. joazeiro extracts are necessary to establish the possible health risk in humans and to determine the potential as a chemopreventive agent for therapeutic use.  相似文献   

3.
This study was designed to determine concentrations of polycyclic aromatic hydrocarbons (PAHs) in soil samples collected from Midway Atoll and evaluate their potential risks to human health. The total concentrations of 16 PAHs ranged from 3.55 to 3200 µg kg−1 with a mean concentration of 198 µg kg−1. Higher molecular weight PAHs (4–6 ring PAHs) dominated the PAH profiles, accounting for 83.3% of total PAH mass. PAH diagnostic ratio analysis indicated that primary sources of PAHs in Midway Atoll could be combustion. The benzo[a]pyrene equivalent concentration (BaPeq) in most of the study area (86.5%) was less than 40 µg kg−1 BaPeq and total incremental lifetime cancer risks of PAHs ranged from 1.00×10−10 to 9.20×10−6 with a median value of 1.24×10−7, indicating a minor carcinogenic risk of PAHs in Midway Atoll.  相似文献   

4.
Application of phosphorus (P) fertilizers to P-deficient soils can also result in P accumulation. In this study, soil P status and P uptake by apple trees were investigated in 5-, 10-, and 15-year-old orchards in the semi-arid Loess Plateau, China, and subset soils with different soil P statuses (14–90 Olsen-P mg kg−1) were selected to evaluate the characteristic P adsorption. Due to the low P-use efficiency (4–6%), total soil P increased from 540 mg kg−1 to 904 mg kg−1, Olsen-P ranged from 3.4 mg kg−1 to 30.7 mg kg−1, and CaCl2-P increased from less than 0.1 mg kg−1 to 0.66 mg kg−1 under continuous P fertilization. The P sorption isotherms for each apple orchard were found to fit the Langmuir isotherm model (R 2 = 0.91–0.98). K (binding energy) and Q m (P sorption maximum) decreased, whereas DPS (degree of phosphorus sorption) increased with increasing P concentration. CaCl2-P increased significantly with the increase of Olsen-P, especially above the change point of 46.1 mg kg−1. Application of surplus P could result in P enrichment in P-deficient soil which has high P fixation capacity, thus posing a significant environmental risk.  相似文献   

5.
The present study was conducted to validate the applicability of Cooper''s 12-minute run test (CRT) for predicting VO2max in male university students of Kolkata, India, to bypass the exhaustive and complicated protocol of direct estimation of VO2max. Eighty-eight sedentary male university students recruited by simple random sampling from the University of Calcutta, Kolkata, were randomly assigned to the study group (N = 58) and the confirmatory group (N = 30). VO2max of each participant was determined by the direct procedure and the indirect CRT method. The mean value of predicted VO2max (PVO2max) (42.8±4.0 ml · kg−1 · min−1 with a range of 33.7–50.9) showed a significant difference with VO2max (39.8±4.0 ml · kg−1 · min−1 with a range of 33.5–47.7) in the study group. Limits of agreement between PVO2max and VO2max were large enough (0.10 to 5.94 ml · kg−1 · min−1) with poor confidence intervals indicating inapplicability of the current protocol of CRT in the studied population. The prediction norm [Y = 21.01X – 11.04 (SEE = 0.193 ml · kg−1 · min−1)] was computed from the significant correlation (r = 0.93, P < 0.001) between distance covered in CRT and VO2max. Application of this norm in the confirmatory group revealed an insignificant difference between PVO2max and VO2max. The modified equation is recommended for application of CRT as a valid method to evaluate the cardiorespiratory fitness in terms of VO2max in sedentary male Indian youth.  相似文献   

6.
We investigated the significance of hydrophobic and charged residues 218–226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I−/− mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-β- and α4-HDL particles. In apoA-I−/− × apoE−/− mice, the same mutant formed few discoidal and pre-β-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I−/− mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218–222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218–222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-β particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.  相似文献   

7.
Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 μmol kg−1), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 μmol kg−1), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 μmol kg−1), and traces of NDAB (3.8 μmol kg−1). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 ± 22 μmol kg−1) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies.  相似文献   

8.
We have hypothesized that a major role of the apical H+-pump in mitochondria-rich (MR) cells of amphibian skin is to energize active uptake of Cl via an apical Cl/HCO3 -exchanger. The activity of the H+ pump was studied by monitoring mucosal [H+]-profiles with a pH-sensitive microelectrode. With gluconate as mucosal anion, pH adjacent to the cornified cell layer was 0.98 ± 0.07 (mean ± SEM) pH-units below that of the lightly buffered bulk solution (pH = 7.40). The average distance at which the pH-gradient is dissipated was 382 ± 18 μm, corresponding to an estimated “unstirred layer” thickness of 329 ± 29 μm. Mucosal acidification was dependent on serosal pCO2, and abolished after depression of cellular energy metabolism, confirming that mucosal acidification results from active transport of H+. The [H+] was practically similar adjacent to all cells and independent of whether the microelectrode tip was positioned near an MR-cell or a principal cell. To evaluate [H+]-profiles created by a multitude of MR-cells, a mathematical model is proposed which assumes that the H+ distribution is governed by steady diffusion from a number of point sources defining a set of particular solutions to Laplace''s equation. Model calculations predicted that with a physiological density of MR cells, the [H+] profile would be governed by so many sources that their individual contributions could not be experimentally resolved. The flux equation was integrated to provide a general mathematical expression for an external standing [H+]–gradient in the unstirred layer. This case was treated as free diffusion of protons and proton-loaded buffer molecules carrying away the protons extruded by the pump into the unstirred layer; the expression derived was used for estimating stationary proton-fluxes. The external [H+]-gradient depended on the mucosal anion such as to indicate that base (HCO3 ) is excreted in exchange not only for Cl , but also for Br and I, indicating that the active fluxes of these anions can be attributed to mitochondria-rich cells.  相似文献   

9.
In this study, we investigated the potential for aflatoxin B1 (AFB1) and B2 (AFB2) production in rice grain by 127 strains of Aspergillus flavus isolated from rice grains collected from China. These strains were inoculated onto rice grains and incubated at 28 °C for 21 days. AFB1 and AFB2 were extracted and quantified by high-performance liquid chromatography coupled with fluorescence detection. Among the tested strains, 37% produced AFB1 and AFB2 with levels ranging from 175 to 124 101 μg kg−1 for AFB1 and from not detected to 10 329 μg kg−1 for AFB2. The mean yields of these isolates were 5884 μg kg−1 for AFB1 and 1968 μg kg−1 for AFB2. Overall, most of the aflatoxigenic strains produced higher levels of AFB1 than AFB2 in rice. The obtained information is useful for assessing the risk of aflatoxin contamination in rice samples.  相似文献   

10.
We studied the significance of four hydrophobic residues within the 225–230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I−/− mice decreased plasma cholesterol, HDL cholesterol, and apoA-I levels. When expressed in apoA-I−/− × apoE−/− mice, approximately 40% of the mutant apoA-I as well as mouse apoA-IV and apoB-48 appeared in the VLDL/IDL/LDL. In both mouse models, the apoA-I mutant generated small spherical particles of pre-β- and α4-HDL mobility. Coexpression of the apoA-I mutant and LCAT increased and shifted the-HDL cholesterol peak toward lower densities, created normal αHDL subpopulations, and generated spherical-HDL particles. Biophysical analyses suggested that the apoA-I[225–230] mutations led to a more compact folding that may limit the conformational flexibility of the protein. The mutations also reduced the ability of apoA-I to promote ABCA1-mediated cholesterol efflux and to activate LCAT to 31% and 66%, respectively, of the WT control. Overall, the apoA-I[225–230] mutations inhibited the biogenesis of-HDL and led to the accumulation of immature pre-β- and α4-HDL particles, a phenotype that could be corrected by administration of LCAT.  相似文献   

11.
(4S)-4-Amino-5,6-heptadienoic acid ((S)--allenyl-GABA; MDL 72483) is a potent inactivator of brain GABA-T in mice; (ED50 (i.p.)=60 mg·kg–1; ED50 (oral)=70 mg·kg–1). Its anticonvulsant effects against 3-mercaptopropionic acid (MPA)-induced seizures in mice is related to the elevation of whole brain GABA concentrations: The mentioned doses of MDL 72483 which cause a decrease of GABA-T activity by 50%, produce within 5 h after dosing an increase of GABA concentration by about 3 mol·g–1, and protect 50% of the mice against seizures in this model of presynaptic GABA deficit. When given orally MDL 72483 is about five times more potent than vigabatrin ((4R/S)-4-amino-5-hexenoic acid) a known antiepileptic GABA-T inhibitor. Complete protection was achieved with a dose of 150 mg·kg–1. Similar to vigabatrin, MDL 72483 does not protect significantly against metrazol-induced convulsions. However, at a dose of 300 mg·kg–1, the time elapsing between metrazol administration and onset of convulsions was prolonged by a factor of 3.4. Oral administration of MDL 72483 for up to 19 days at a daily dose of 91–96 mg·kg–1 did not produce any obvious behavioral changes in mice, nor was the ED50 of the drug in MPA-seizure tests significantly altered by the pretreatment. These observations indicate that MDL 72483 is a promising drug for the treatment of certain epilepsies.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

12.
13.

Aim

To investigate the effects of inotropic agents on parameters of tissue perfusion in patients with cardiogenic shock.

Methods and Results

Thirty patients with cardiogenic shock were included. Patients received dobutamine, enoximone, or norepinephrine. We performed hemodynamic measurements at baseline and after titration of the inotropic agent until cardiac index (CI) ≥2.5 L.min−1.m−2 or mixed-venous oxygen saturation (SvO2) ≥70% (dobutamine or enoximone), and mean arterial pressure (MAP) ≥70 mmHg (norepinephrine). As parameters of tissue perfusion, we measured central-peripheral temperature gradient (delta-T) and sublingual perfused capillary density (PCD). All patients reached predefined therapeutic targets. The inotropes did not significantly change delta-T. Dobutamine did not change PCD. Enoximone increased PCD (9.1 [8.9–10.2] vs. 11.4 [8.4–13.9] mm.mm−2; p<0.05), and norepinephrine tended to decrease PCD (9.8 [8.5–11.9] vs. 8.8 [8.2–9.6] mm.mm−2, p = 0.08). Fifteen patients (50%) died within 30 days after admission. Patients who had low final PCD (≤10.3 mm.mm−2; 64%) were more likely to die than patients who had preserved PCD (>10.3 mm.mm−2; mortality 72% vs. 17%, p = 0.003).

Conclusion

This study demonstrates the effects of commonly used inotropic agents on parameters of tissue perfusion in patients with cardiogenic shock. Despite hemodynamic optimization, tissue perfusion was not sufficiently restored in most patients. In these patients, mortality was high. Interventions directed at improving microcirculation may eventually help bridging the gap between improved hemodynamics and dismal patient outcome in cardiogenic shock.  相似文献   

14.
Coinhibitory PD-1/PD-L1 (B7-H1) interactions provide critical signals for the regulation of autoreactive T-cell responses. We established mouse models, expressing the costimulator molecule B7.1 (CD80) on pancreatic beta cells (RIP-B7.1 tg mice) or are deficient in coinhibitory PD-L1 or PD-1 molecules (PD-L1−/− and PD-1−/− mice), to study induction of preproinsulin (ppins)-specific CD8 T-cell responses and experimental autoimmune diabetes (EAD) by DNA-based immunization. RIP-B7.1 tg mice allowed us to identify two CD8 T-cell specificities: pCI/ppins DNA exclusively induced Kb/A12–21-specific CD8 T-cells and EAD, whereas pCI/ppinsΔA12–21 DNA (encoding ppins without the COOH-terminal A12–21 epitope) elicited Kb/B22–29-specific CD8 T-cells and EAD. Specific expression/processing of mutant ppinsΔA12–21 (but not ppins) in non-beta cells, targeted by intramuscular DNA-injection, thus facilitated induction of Kb/B22–29-specific CD8 T-cells. The A12–21 epitope binds Kb molecules with a very low avidity as compared with B22–29. Interestingly, immunization of coinhibition-deficient PD-L1−/− or PD-1−/− mice with pCI/ppins induced Kb/A12–21-monospecific CD8 T-cells and EAD but injections with pCI/ppinsΔA12–21 did neither recruit Kb/B22–29-specific CD8 T-cells into the pancreatic target tissue nor induce EAD. PpinsΔA12–21/(Kb/B22–29)-mediated EAD was efficiently restored in RIP-B7.1+/PD-L1−/− mice, differing from PD-L1−/− mice only in the tg B7.1 expression in beta cells. Alternatively, an ongoing beta cell destruction and tissue inflammation, initiated by ppins/(Kb/A12–21)-specific CD8 T-cells in pCI/ppins+pCI/ppinsΔA12–21 co-immunized PD-L1−/− mice, facilitated the expansion of ppinsΔA12–21/(Kb/B22–29)-specific CD8 T-cells. CD8 T-cells specific for the high-affinity Kb/B22–29- (but not the low-affinity Kb/A12–21)-epitope thus require stimulatory ´help from beta cells or inflamed islets to expand in PD-L1-deficient mice. The new PD-1/PD-L1 diabetes models may be valuable tools to study under well controlled experimental conditions distinct hierarchies of autoreactive CD8 T-cell responses, which trigger the initial steps of beta cell destruction or emerge during the pathogenic progression of EAD.  相似文献   

15.

Background

GABAA receptors (GABAAR) are composed of several subunits that determine sensitivity to drugs, synaptic localisation and function. Recent studies suggest that agonists targeting selective GABAAR subunits may have therapeutic value against the cognitive impairments observed in schizophrenia. In this study, we determined whether GABAAR binding deficits exist in the dorsolateral prefrontal cortex (DLPFC) of people with schizophrenia and tested if changes in GABAAR binding are related to the changes in subunit mRNAs. The GABA orthosteric and the benzodiazepine allosteric binding sites were assessed autoradiographically using [3H]Muscimol and [3H]Flumazenil, respectively, in a large cohort of individuals with schizophrenia (n = 37) and their matched controls (n = 37). We measured, using qPCR, mRNA of β (β1, β2, β3), γ (γ1, γ2, γ2S for short and γ2L for long isoform, γ3) and δ subunits and used our previous measurements of GABAAR α subunit mRNAs in order to relate mRNAs and binding through correlation and regression analysis.

Results

Significant increases in both [3H]Muscimol (p = 0.016) and [3H]Flumazenil (p = 0.012) binding were found in the DLPFC of schizophrenia patients. Expression levels of mRNA subunits measured did not show any significant difference in schizophrenia compared to controls. Regression analysis revealed that in schizophrenia, the [3H]Muscimol binding variance was most related to α4 mRNA levels and the [3H]Flumazenil binding variance was most related to γ2S subunit mRNA levels. [3H]Muscimol and [3H]Flumazenil binding were not affected by the lifetime anti-psychotics dose (chlorpromazine equivalent).

Conclusions

We report parallel increases in orthosteric and allosteric GABAAR binding sites in the DLPFC in schizophrenia that may be related to a “shift” in subunit composition towards α4 and γ2S respectively, which may compromise normal GABAergic modulation and function. Our results may have implications for the development of treatment strategies that target specific GABAAR receptor subunits.  相似文献   

16.
The neuropeptide Phe-Met-Arg-Phe-amide (FMRFa) dose dependently (ED50 = 23 nM) activated a K+ current in the peptidergic caudodorsal neurones that regulate egg laying in the mollusc Lymnaea stagnalis. Under standard conditions ([K+]o = 1.7 mM), only outward current responses occurred. In high K+ salines ([K+]o = 20 or 57 mM), current reversal occurred close to the theoretical reversal potential for K+. In both salines, no responses were measured below −120 mV. Between −120 mV and the K+ reversal potential, currents were inward with maximal amplitudes at ∼−60 mV. Thus, U-shaped current–voltage relations were obtained, implying that the response is voltage dependent. The conductance depended both on membrane potential and extracellular K+ concentration. The voltage sensitivity was characterized by an e-fold change in conductance per ∼14 mV at all [K+]o. Since this result was also obtained in nearly symmetrical K+ conditions, it is concluded that channel gating is voltage dependent. In addition, outward rectification occurs in asymmetric K+ concentrations. Onset kinetics of the response were slow (rise time ∼650 ms at −40 mV). However, when FMRFa was applied while holding the cell at −120 mV, to prevent activation of the current but allow activation of the signal transduction pathway, a subsequent step to −40 mV revealed a much more rapid current onset. Thus, onset kinetics are largely determined by steps preceding channel activation. With FMRFa applied at −120 mV, the time constant of activation during the subsequent test pulse decreased from ∼36 ms at −60 mV to ∼13 ms at −30 mV, confirming that channel opening is voltage dependent. The current inactivated voltage dependently. The rate and degree of inactivation progressively increased from −120 to −50 mV. The current is blocked by internal tetraethylammonium and by bath- applied 4-aminopyridine, tetraethylammonium, Ba2+, and, partially, Cd2+ and Cs+. The response to FMRFa was affected by intracellular GTPγS. The response was inhibited by blockers of phospholipase A2 and lipoxygenases, but not by a cyclo-oxygenase blocker. Bath-applied arachidonic acid induced a slow outward current and occluded the response to FMRFa. These results suggest that the FMRFa receptor couples via a G-protein to the lipoxygenase pathway of arachidonic acid metabolism. The biophysical and pharmacological properties of this transmitter operated, but voltage-dependent K+ current distinguish it from other receptor-driven K+ currents such as the S-current- and G-protein-dependent inward rectifiers.  相似文献   

17.
Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site.  相似文献   

18.
U-68,215 [15-Cyclohexyl-9-deoxo-13, 14-dihydro-2′, 9a-methano-4,5,6,16,17,18,19,20-octanor-3-oxa-3,7-(′1,′3-interphenylene)-PGE1] is a stable prostacyclin analog. When given orally to rats, it is cytoprotective for the stomach (ED50: 0.8 μg/kg) and the intestine (ED50: 22 μg/kg), is gastric antisecretory (ED50: 35 μg/kg) and antiulcer (aspirin) (ED50: 5 μg/kg). The oral antisecretory ED50 in dogs in 50 μg/kg. It has a long duration of gastric cytoprotection: 8–10 hours compared to 3 hours for 16, 16-dimethyl PGE2 Unlike most prostaglandins of the E type, it is not diarrheogenic (not enteropooling), it does not induced cellular proliferation of the gastroeintestinal mucosa, when given twice a day for eight days, it is not uterotonic (in monkeys), and it does not prevent embryo implantation in hamsters. It ihibits platelet aggregation (ED50: 300 μg/kg), but does not promote bleeding from cut vessels nor from gastric ulcers. U-68,215 lowers blood pressure at a n oral dose correponding to 1–5 time the antisecretory ED50 in rats and dogs, and to 150 times the cytoprotective ED50 in rats. It may be of therapeutic value in the treatment of conditions where inhibition of gastric acid secretion is desirable, e.g., gastric and duodenal ulcer, and in conditions responding to cytoprotection, e.g., stress ulcers, hemorrhagic gastritis and gastric erosions associated with nonsteroidal antiinflammatory drugs.  相似文献   

19.
Cut muscle fibers from Rana temporaria (sarcomere length, 3.5–3.9 μm; 14–16°C) were mounted in a double Vaseline-gap chamber and equilibrated with an external solution that contained tetraethyl ammonium– gluconate and an internal solution that contained Cs as the principal cation, 20 mM EGTA, and 0 Ca. Fibers were stimulated with a voltage-clamp pulse protocol that consisted of pulses to −70, −65, −60, −45, and −20 mV, each separated by 400-ms periods at −90 mV. The change in total Ca that entered into the myoplasm (Δ[CaT]) and the Ca content of the SR ([CaSR]) were estimated with the EGTA/phenol red method (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. J. Gen. Physiol. 106:259–336). Fibers were stimulated with the pulse protocol, usually every 5 min, so that the resting value of [CaSR] decreased from its initial value of 1,700–2,300 μM to values near or below 100 μM after 18–30 stimulations. Three main findings for the voltage pulses to −70, −65, and −60 mV are: (a) the depletion-corrected rate of Ca release (release permeability) showed little change when [CaSR] decreased from its highest level (>1,700 μM) to ∼1,000 μM; (b) as [CaSR] decreased below 1,000 μM, the release permeability increased to a maximum level when [CaSR] was near 300 μM that was on average about sevenfold larger than the values observed for [CaSR] > 1,000 μM; and (c) as [CaSR] decreased from ∼300 μM to <100 μM, the release permeability decreased, reaching half its maximum value when [CaSR] was ∼110 μM on average. It was concluded that finding b was likely due to a decrease in Ca inactivation, while finding c was likely due to a decrease in Ca-induced Ca release.  相似文献   

20.
GABA type A receptors (GABAAR), the brain''s major inhibitory neurotransmitter receptors, are the targets for many general anesthetics, including volatile anesthetics, etomidate, propofol, and barbiturates. How such structurally diverse agents can act similarly as positive allosteric modulators of GABAARs remains unclear. Previously, photoreactive etomidate analogs identified two equivalent anesthetic-binding sites in the transmembrane domain at the β+ subunit interfaces, which also contain the GABA-binding sites in the extracellular domain. Here, we used R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB), a potent stereospecific barbiturate anesthetic, to photolabel expressed human α1β3γ2 GABAARs. Protein microsequencing revealed that R-[3H]mTFD-MPAB did not photolabel the etomidate sites at the β+ subunit interfaces. Instead, it photolabeled sites at the α+ and γ+ subunit interfaces in the transmembrane domain. On the (+)-side, α1M3 was labeled at Ala-291 and Tyr-294 and γ2M3 at Ser-301, and on the (−)-side, β3M1 was labeled at Met-227. These residues, like those in the etomidate site, are located at subunit interfaces near the synaptic side of the transmembrane domain. The selectivity of R-etomidate for the β+ interface relative to the α++ interfaces was >100-fold, whereas that of R-mTFD-MPAB for its sites was >50-fold. Each ligand could enhance photoincorporation of the other, demonstrating allosteric interactions between the sites. The structural heterogeneity of barbiturate, etomidate, and propofol derivatives is accommodated by varying selectivities for these two classes of sites. We hypothesize that binding at any of these homologous intersubunit sites is sufficient for anesthetic action and that this explains to some degree the puzzling structural heterogeneity of anesthetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号