首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The factors that regulate the contraction of the CD8 T cell response and the magnitude of the memory cell population against localized mucosal infections such as influenza are important for generation of efficient vaccines but are currently undefined. In this study, we used a mouse model of influenza to demonstrate that the absence of gamma interferon (IFN-γ) or IFN-γ receptor 1 (IFN-γR1) leads to aberrant contraction of antigen-specific CD8 T cell responses. The increased accumulation of the effector CD8 T cell population was independent of viral load. Reduced contraction was associated with an increased fraction of CD8 T cells expressing the interleukin-7 receptor (IL-7R) at the peak of the response, resulting in enhanced numbers of memory/memory precursor cells in IFN-γ−/− and IFN-γR−/− compared to wild-type (WT) mice. Blockade of IL-7 within the lungs of IFN-γ−/− mice restored the contraction of influenza virus-specific CD8 T cells, indicating that IL-7R is important for survival and is not simply a consequence of the lack of IFN-γ signaling. Finally, enhanced CD8 T cell recall responses and accelerated viral clearance were observed in the IFN-γ−/− and IFN-γR−/− mice after rechallenge with a heterologous strain of influenza virus, confirming that higher frequencies of memory precursors are formed in the absence of IFN-γ signaling. In summary, we have identified IFN-γ as an important regulator of localized viral immunity that promotes the contraction of antigen-specific CD8 T cells and inhibits memory precursor formation, thereby limiting the size of the memory cell population after an influenza virus infection.  相似文献   

2.
In this study, we demonstrate that killer cell lectin-like receptor subfamily G member 1 (KLRG1), a transmembrane protein preferentially expressed on T cells, is highly expressed on CD56+ NK cells, which are significantly reduced in their numbers and functions in the peripheral blood of patients with chronic hepatitis C virus (HCV) infection compared to subjects without infection. KLRG1 expression is also upregulated on healthy NK cells exposed to Huh-7 hepatocytes infected with HCV in vitro. Importantly, the expression levels of KLRG1 are inversely associated with the capacity of NK cells to proliferate and to produce gamma interferon (IFN-γ) but positively associated with apoptosis of NK cells in response to inflammatory cytokine stimulation. KLRG1+ NK cells, including CD56bright and CD56dim subsets, exhibit impaired cell activation and IFN-γ production but increased apoptosis compared to KLRG1 NK cells, particularly in HCV-infected individuals. Importantly, blockade of KLRG1 signaling significantly recovered the impaired IFN-γ production by NK cells from HCV-infected subjects. Blockade of KLRG1 also enhanced the impaired phosphorylation of Akt (Ser473) in NK cells from HCV-infected subjects. Taken together, these results indicate that KLRG1 negatively regulates NK cell numbers and functions via the Akt pathway, thus providing a novel marker and therapeutic target for HCV infection.  相似文献   

3.
CD160 is a cell surface molecule expressed by most NK cells and approximately 50% of CD8+ cytotoxic T lymphocytes. Engagement of CD160 by MHC class-I directly triggers a costimulatory signal to TCR-induced proliferation, cytokine production and cytotoxic effector functions. The role of CD160 in alloimmunity is unknown. Using a newly generated CD160 fusion protein (CD160Ig) we examined the role of the novel costimulatory molecule CD160 in mediating CD4+ or CD8+ T cell driven allograft rejection. CD160Ig inhibits alloreactive CD8+ T cell proliferation and IFN-γ production in vitro, in particular in the absence of CD28 costimulation. Consequently CD160Ig prolongs fully mismatched cardiac allograft survival in CD4−/−, CD28−/− knockout and CTLA4Ig treated WT recipients, but not in WT or CD8−/− knockout recipients. The prolonged cardiac allograft survival is associated with reduced alloreactive CD8+ T cell proliferation, effector/memory responses and alloreactive IFN-γ production. Thus, CD160 signaling is particularly important in CD28-independent effector/memory CD8+ alloreactive T cell activation in vivo and therefore may serve as a novel target for prevention of allograft rejection.  相似文献   

4.
Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47phox−/− mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47phox−/− bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1β) release by p47phox−/− macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4+T cells and tissue infiltration of immune cells in T. cruzi infected p47phox−/− mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8+T cells was severely compromised in p47phox−/− mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8+T cell response with type 1 (IFN-γ+TNF-α>IL-4+IL-10), cytolytic effector (CD8+CD107a+IFN-γ+) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8+T cell response. In the event of NOX2 deficiency, a compromised CD8+T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.  相似文献   

5.
Production of the pro-inflammatory cytokine IL-12 by innate phagocytes drives the differentiation of IFN-γ-producing effector T cells during Toxoplasma gondii infection. However, the role of IL-12 in the regulation of memory CD8+ T cell differentiation and function during murine toxoplasmosis is unclear. To track memory CTL development, we identified a novel H-2Kb-restricted CTL population specific for the Toxoplasma antigen tgd057. Tgd057-specific CTLs were induced by both vaccination and natural peroral infection, and were representative of the polyclonal CTL population. Tgd057-specific primary effector cells required IL-12 for the differentiation of KLRG1+ effector subpopulations and IFN-γ production in response to restimulation with parasite-infected cells, but not to restimulation with cognate peptide. The effect of IL-12 deficiency during the primary response was profoundly imprinted on memory CTLs, which continued to show defects in cell numbers, KLRG1+ effector memory subpopulation differentiation, and IFN-γ recall responses. Importantly, isolated CD62Lhi KLRG1- CD8+ T cells differentiated in the absence of IL-12 were enhanced in their ability to generate IFN-γ-producing secondary tgd057-specific effector cells. Our data, for the first time, demonstrate the negative impact of IL-12 signaling on the quality of the central memory CTL compartment. Thus, despite the beneficial role of IL-12 in promoting effector differentiation, excessive exposure to IL-12 during CTL priming may limit the development of long-term protective immunity through the decreased fitness of central memory CTL responses.  相似文献   

6.
CD244 (2B4) is a member of the signaling lymphocyte activation molecule (SLAM) family of immune cell receptors and it plays an important role in modulating NK cell and CD8+ T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4+ T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4+ T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4+ T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4+ T cells, CD244/2B4-bright CD4+ T cell subset had significantly reduced expression of IFN-γ, suggesting that CD244/2B4 expression may modulate IFN-γ production in M. tuberculosis antigen-responsive CD4+ T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-γ. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-γ, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4+ T cell function.  相似文献   

7.
CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6 CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6 subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1 −/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6 cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells.  相似文献   

8.
The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-γ secreting CD8+ T cells specific for H-2Kb-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2−/−, Tlr4−/−, Tlr9−/ or Myd88−/− mice generated both specific cytotoxic responses and IFN-γ secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-γ+CD4+ cells was diminished in infected Myd88−/− mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-γ, TNF-α and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4−/− mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi.  相似文献   

9.
The human polyomavirus BK virus (BKV) establishes a latent and asymptomatic infection in the majority of the population. In immunocompromised individuals, the virus frequently (re)activates and may cause severe disease such as interstitial nephritis and hemorrhagic cystitis. Currently, the therapeutic options are limited to reconstitution of the antiviral immune response. T cells are particularly important for controlling this virus, and T cell therapies may provide a highly specific and effective mode of treatment. However, little is known about the phenotype and function of BKV-specific T cells in healthy individuals. Using tetrameric BKV peptide-HLA-A02 complexes, we determined the presence, phenotype, and functional characteristics of circulating BKV VP1-specific CD8+ T cells in 5 healthy individuals. We show that these cells are present in low frequencies in the circulation and that they have a resting CD45RA CD27+ memory and predominantly CCR7 CD127+ KLRG1+ CD49dhi CXCR3hi T-betint Eomesoderminlo phenotype. Furthermore, their direct cytotoxic capacity seems to be limited, since they do not readily express granzyme B and express only little granzyme K. We compared these cells to circulating CD8+ T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and influenza virus (Flu) in the same donors and show that BKV-specific T cells have a phenotype that is distinct from that of CMV- and EBV-specific T cells. Lastly, we show that BKV-specific T cells are polyfunctional since they are able to rapidly express interleukin-2 (IL-2), gamma interferon (IFN-γ), tumor necrosis factor α, and also, to a much lower extent, MIP-1β and CD107a.  相似文献   

10.
11.
CD8 T-cells contribute to control of Mycobacterium tuberculosis infection, but little is known about the quality of the CD8 T-cell response in subjects with latent infection and in patients with active tuberculosis disease. CD8 T-cells recognizing epitopes from 6 different proteins of Mycobacterium tuberculosis were detected by tetramer staining. Intracellular cytokines staining for specific production of IFN-γ and IL-2 was performed, complemented by phenotyping of memory markers on antigen-specific CD8 T-cells. The ex-vivo frequencies of tetramer-specific CD8 T-cells in tuberculous patients before therapy were lower than in subjects with latent infection, but increased at four months after therapy to comparable percentages detected in subjects with latent infection. The majority of CD8 T-cells from subjects with latent infection expressed a terminally-differentiated phenotype (CD45RA+CCR7). In contrast, tuberculous patients had only 35% of antigen-specific CD8 T-cells expressing this phenotype, while containing higher proportions of cells with an effector memory- and a central memory-like phenotype, and which did not change significantly after therapy. CD8 T-cells from subjects with latent infection showed a codominance of IL-2+/IFN-γ+ and IL-2/IFN-γ+ T-cell populations; interestingly, only the IL-2+/IFN-γ+ population was reduced or absent in tuberculous patients, highly suggestive of a restricted functional profile of Mycobacterium tuberculosis-specific CD8 T-cells during active disease. These results suggest distinct Mycobacterium tuberculosis specific CD8 T-cell phenotypic and functional signatures between subjects which control infection (subjects with latent infection) and those who do not (patients with active disease).  相似文献   

12.

Background

The emergence of antibiotic-resistant strains of Salmonella enterica serovar Typhi (S. Typhi), the etiologic agent of typhoid fever, has aggravated an already important public health problem and added new urgency to the development of more effective typhoid vaccines. To this end it is critical to better understand the induction of immunity to S. Typhi. CD8+ T cells are likely to play an important role in host defense against S. Typhi by several effector mechanisms, including killing of infected cells and IFN-γ secretion. However, how S. Typhi regulates the development of specific CD8+ responses in humans remains unclear. Recent studies in mice have shown that dendritic cells (DC) can either directly (upon uptake and processing of Salmonella) or indirectly (by bystander mechanisms) elicit Salmonella-specific CD8+ T cells.

Methodology/Principal Findings

We report here that upon infection with live S. Typhi, human DC produced high levels of pro-inflammatory cytokines IL-6, IL-8 and TNF-α, but low levels of IL-12 p70 and IFN-γ. In contrast, DC co-cultured with S. Typhi-infected cells, through suicide cross-presentation, uptake S. Typhi-infected human cells and release high levels of IFN-γ and IL-12p70, leading to the subsequent presentation of bacterial antigens and triggering the induction of memory T cells, mostly CD3+CD8+CD45RACD62L effector/memory T cells.

Conclusions/Significance

This study is the first to demonstrate the effect of S. Typhi on human DC maturation and on their ability to prime CD8+ cells and highlights the significance of these phenomena in eliciting adaptive immunity to S. Typhi.  相似文献   

13.

Background

Antigen-specific IFN-γ producing CD4+ T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-γ production without affecting protective IFN-γ is a challenge in tuberculosis research.

Methods and Findings

Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4+ T cell-mediated IFN-γ response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-γ response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8+ T cells which suppressed IFN-γ-secreting CD4+ T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-γ responses by CD4+ T cells in protein-boosted mice without affecting the low protective IFN-γ-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8+ T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-γ inhibition did not require soluble IL-10, TGF-β, XCL-1 and MIP-1β. In vivo Ag85B stimulation induced 4-1BB expression on CD8+ T cells and in vivo 4-1BB ligation reduced the activation, IFN-γ production and expansion of Ag85B-specific CD4+ T cells of DNA-primed and protein-boosted mice.

Conclusion/Significance

Antigen-specific suppressor CD8+ T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-γ-secreting CD4+ T cells. The selective expression of 4-1BB only on CD8+ T cells in mice developing a massive, non-protective IFN-γ response opens novel strategies for intervention in tuberculosis pathology and vaccination through T-cell co-stimulatory-based molecular targeting.  相似文献   

14.
Teleost fish express highly diverse naive TCRβ (TRB) repertoires and mount strong public and private clonal responses upon infection with pathogens. Fish T cells express typical markers such as CD8, CD4-1 and CD4-2, CD3, CD28 and CTLA4. Fish CD8+ T cells have been shown to be responsible for antigen-specific cell-mediated cytotoxicity in in vitro systems using histo-compatible effector and target cells. We compare here the complexity of TRB repertoires between FACS sorted CD8+ and CD8 T cells from spleen and pronephros of rainbow trout. In contrast to human, while the TRB repertoire is highly diverse and polyclonal in CD8+ T cells of naïve fish, it appeared very different in CD8 lymphocytes with irregular CDR3 length distributions suggesting a dominance of activated clones already in naïve fish or the presence of non conventional T cells. After infection with a systemic virus, CD8+ T cells mount a typical response with significant skewing of CDR3 length profiles. The infection also induces significant modifications of the TRB repertoire expressed by the CD8 fraction, but for a different set of V/J combinations. In this fraction, the antiviral response results in an increase of the peak diversity of spectratypes. This unusual observation reflects the presence of a number of T cell expansions that rise the relative importance of minor peaks of the highly skewed distributions observed in unchallenged animals. These results suggest that the diversity of TRB expressed by CD8+ and CD8 αβ T cells may be subjected to different regulatory patterns in fish and in mammals.  相似文献   

15.
Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4+ and CD8+ T cell adaptive and memory immune responses, which were mostly mediated by CD8+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4+ T cell responses were mainly directed against Env, while GPN-specific CD8+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates.  相似文献   

16.
During secondary immune responses to influenza virus, virus-specific T memory cells are a major source of gamma interferon (IFN-γ). We assessed the contribution of IFN-γ to heterologous protection against the A/WSN/33 (H1N1) virus of wild-type and IFN-γ−/− mice previously immunized with the A/HK/68 (H3N2) virus. The IFN-γ−/− mice displayed significantly reduced survival rates subsequent to a challenge with various doses of the A/WSN/33 virus. This was associated with an impaired ability of the IFN-γ−/− mice to completely clear the pulmonary virus by day 7 after the challenge, although significant reduction of the virus titers was noted. However, the IFN-γ−/− mice developed type A influenza virus cross-reactive cytotoxic T lymphocytes (CTLs) similar to the wild-type mice, as demonstrated by both cytotoxicity and a limiting-dilution assay for the estimation of CTL precursor frequency. The pulmonary recruitment of T cells in IFN-γ−/− mice was not dramatically affected, and the percentage of CD4+ and CD8+ T cells was similar to that of wild-type mice. The T cells from IFN-γ−/− mice did not display a significant switch toward a Th2 profile. Furthermore, the IFN-γ−/− mice retained the ability to mount significant titers of WSN and HK virus-specific hemagglutination-inhibiting antibodies. Together, these results are consistent with a protective role of IFN-γ during the heterologous response against influenza virus independently of the generation and local recruitment of cross-reactive CTLs.  相似文献   

17.
18.
In contrast to the ability of long-lived CD8+ memory T cells to mediate protection against systemic viral infections, the relationship between CD4+ T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44+CD62LT-bet+Ly6C+ effector (TEFF) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C+ TEFF cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44+CD62LLy6C effector memory or CD44+CD62L+Ly6C central memory cells. During chronic infection, Ly6C+ TEFF cells were maintained at high frequencies via reactivation of TCM and the TEFF themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing TEFF cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies.  相似文献   

19.
Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals.  相似文献   

20.
Dendritic cells (DCs) are potent antigen-presenting cells with a promising potential in cancer immunotherapy. Cbl proteins are E3 ubiquitin ligases and have been implicated in regulating the functional activity of various immune cells. As an example, c-Cbl negatively affects DC activation. We here describe that another member of the Cbl-protein family (i.e. Cbl-b) is highly expressed in murine bone-marrow-derived DCs (BMDCs). Differentiation of cblb−/− bone marrow mononuclear cells into classical BMDCs is unaltered, except enhanced induction of DEC-205 (CD205) expression. When tested in mixed-lymphocyte reaction (MLR), cblb−/− BMDCs exhibit increased allo-stimulatory capacity in vitro. BMDCs were next in vitro stimulated by various toll like receptor (TLR)-agonists (LPS, Poly(I:C), CpG) and exposed to FITC-labeled dextran. Upon TLR-stimulation, cblb−/− BMDCs produce higher levels of proinflammatory cytokines (IL-1α, IL-6 and TNF-α) and exhibit a slightly higher level of FITC-dextran uptake. To further characterize the functional significance of cblb−/− BMDCs we tested them in antigen-specific T cell responses against ovalbumin (OVA) protein and peptides, activating either CD8+ OT-I or CD4+ OT-II transgenic T cells. However, cblb−/− BMDCs are equally effective in inducing antigen-specific T cell responses when compared to wildtype BMDCs both in vitro and in vivo. The migratory capacity into lymph nodes during inflammation was similarly not affected by the absence of Cbl-b. In line with these observations, cblb−/− peptide-pulsed BMDCs are equally effective vaccines against OVA-expressing B16 tumors in vivo when compared to wildtype BMDCs. We conclude that in contrast to c-Cbl, Cbl-b plays only a limited role in the induction of Ag-specific T cell responses by murine BMDCs in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号