首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Macromycetes are important for ecosystem functioning due to their role in the nutrient cycling, and their function as pathogens and mutualists. Diversity metrics based on functional traits are robust predictors of ecosystem functionality since they incorporate an evolutionary and ecologic background. We examined diversity patterns of macrofungi using functional trait-based metrics of diversity along an altitudinal gradient in a seasonally dry tropical forest in southern Mexico. Our findings show that: (1) functional diversity varies with elevation, relating more to climatic variables than to vegetation structure; (2) functional diversity indexes exhibited contrasting patterns, so measures reflecting heterogeneity on trait abundance and niche complementarity tend to increase with elevation, whereas the measure of trait evenness decreases; and (3) functional diversity patterns depend on the type of functional trait considered and how they respond to environmental conditions. Our results indicate that functional diversity analyses help understanding of how macrofungal communities respond to environmental variation.  相似文献   

3.
Seasonally dry tropical forests (SDTF) are a widely distributed vegetation type in the tropics, characterized by seasonal rainfall with several months of drought when they are subject to fire. This study is one of the first attempts to quantify above- and belowground biomass (AGB and BGB) and above- and belowground carbon (AGC and BGC) pools to calculate their recovery after fire, using a chronosequence approach (six forests that ranged form 1 to 29 years after fire and mature forest). We quantified AGB and AGC pools of trees, lianas, palms, and seedlings, and BGB and BGC pools (Oi, Oe, Oa soil horizons, and fine roots). Total AGC ranged from 0.05 to nearly 72 Mg C ha−1, BGC from 21.6 to nearly 85 Mg C ha−1, and total ecosystem carbon from 21.7 to 153.5 Mg C ha−1; all these pools increased with forest age. Nearly 50% of the total ecosystem carbon was stored in the Oa horizon of mature forests, and up to 90% was stored in the Oa-horizon of early successional SDTF stands. The soils were shallow with a depth of <20 cm at the study site. To recover values similar to mature forests, BGC and BGB required <19 years with accumulation rates greater than 20 Mg C ha−1 yr−1, while AGB required 80 years with accumulation rates nearly 2.5 Mg C ha−1 yr−1. Total ecosystem biomass and carbon required 70 and 50 years, respectively, to recover values similar to mature forests. When belowground pools are not included in the calculation of total ecosystem biomass or carbon recovery, we estimated an overestimation of 10 and 30 years, respectively.  相似文献   

4.
Studies of the variation in tropical plant species diversity and itsrelationship with environmental factors are largely based on research intropical moist/wet forests. Seasonally dry tropical forests (SDTFs), incontrast, have been poorly investigated. In this paper we present data from 20Mexican SDTF sites sampled to describe the magnitude of floristic diversity inthese forests and to address the following questions: (i) to what extent isspecies diversity related to rainfall? (ii) Are there other climatic variablesthat explain variation in species diversity in SDTFs? (iii) How does speciesidentity vary spatially (species turnover) within the country? We found thatspecies diversity was consistently greater (a ca. twofold difference) than wouldbe expected according to the sites' precipitation. Rainfall did notsignificantly explain the variation in species diversity. Likewise, the numberof dry and wet months per year was unrelated to species diversity. In contrast,a simple measure of potential evapotranspiration (Thornthwaite's index)significantly explained the variation in species diversity. In addition to thegreat diversity of species per site (local diversity), species turnover wasconsiderable: of a total of 917 sampled species, 72% were present only in asingle site and the average similarity (Sorensen's index) among sites wasonly 9%. These aspects of floristic diversity and the high deforestation ratesof these forests in Mexico indicate that conservation efforts should be directedto tropical forests growing in locations of low and seasonal rainfall.  相似文献   

5.
Little is known about partitioning of soil water resources in species-rich, seasonally dry tropical forests. We assessed spatial and temporal patterns of soil water utilization in several canopy tree species on Barro Colorado Island, Panama, during the 1997 dry season. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and sap flow were measured concurrently. Evaporative fractionation near the soil surface caused soil water δD to decrease from about –15‰ at 0.1 m to –50 to –55‰ at 1.2 m depth. Groundwater sampled at the sources of nearby springs during this period yielded an average δD value of –60‰. θv increased sharply and nearly linearly with depth to 0.7 m, then increased more slowly between 0.7 and 1.05 m. Based on xylem δD values, water uptake in some individual plants appeared to be restricted largely to the upper 20 cm of the soil profile where θv dropped below 20% during the dry season. In contrast, other individuals appeared to have access to water at depths greater than 1 m where θv remained above 45% throughout the dry season. The depths of water sources for trees with intermediate xylem δD values were less certain because variation in soil water δD between 20 and 70 cm was relatively small. Xylem water δD was also strongly dependent on tree size (diameter at breast height), with smaller trees appearing to preferentially tap deeper sources of soil water than larger trees. This relationship appeared to be species independent. Trees able to exploit progressively deeper sources of soil water during the dry season, as indicated by increasingly negative xylem δD values, were also able to maintain constant or even increase rates of water use. Seasonal courses of water use and soil water partitioning were associated with leaf phenology. Species with the smallest seasonal variability in leaf fall were also able to tap increasingly deep sources of soil water as the dry season progressed. Comparison of xylem, soil, and groundwater δD values thus pointed to spatial and temporal partitioning of water resources among several tropical forest canopy tree species during the dry season. Received: 5 October 1998 / Accepted: 23 June 1999  相似文献   

6.
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species.  相似文献   

7.
8.
Summary Total above ground plant biomass in a 45 year old seasonally dry tropical hardwood forest was estimated to be approximately 56,000 kg/ha oven dry weight. Nutrients immobilized in the standing vegetation were: N, 203 kg/ha; P, 24 kg/ha; K, 234 kg/ha; Ca, 195 kg/ha; Mg, 47 kg/ha; Na, 9 kg/ha; Mn, 1 kg/ha; Cu, 0.5 kg/ha; Zn, 3 kg/ha; Fe, 4 kg/ha. Total nutrients returned each year through the litter were: N, 156 kg/ha; P, 9 kg/ha; K, 59 kg/ha; Ca, 373 kg/ha; Mg, 32 kg/ha; Na, 5 kg/ha; Mn, 1 kg/ha; Al, 21 kg/ha; Zn, 0.3 kg/ha; Fe, 9 kg/ha. Half of the nutrients immobilized in the standing vegetation were found in the leaves and are returned annually to the soil. Although litter fall is interrupted during the year, the mean nutrient content of the litter was high –5.2%.A decomposition rate of 0.48 percent per day was considered high for a seasonally dry tropical hardwood forest. Fluctuations in soil nutrient levels showed a sharp increase at the start of the rainy season. Later during the dry season nutrient levels decreased to concentrations similar to what they were just prior to the rainy season. Soil organic matter levels were very high –20% in the top 12 cm.  相似文献   

9.
We used a comparative phylogeographical approach to investigate the origins of the disjunct wet forest biota of the Golfo Dulce region along the Pacific slope of Costa Rica. This region is isolated by Pacific dry forests north and south and isolated from Caribbean wet forests by mountains. We studied three sympatric lowland frog species in the Craugastor fitzingeri species group that prefer wet forest but differ in their response to dry habitats. In dry forest, C. fitzingeri can survive along streams while C. crassidigitus and C. talamancae are entirely absent. We collected samples from across the ranges of all three species, and obtained mitochondrial DNA sequence data from the COI and cytochrome b genes. We observed significant phylogeographical structure in C. crassidigitus and C. talamancae, but much less in C. fitzingeri, demonstrating that mountain barriers and dry forest habitat have reduced mitochondrial gene flow in the strictly wet-forest species. Additionally, we discovered that the Golfo Dulce and Central Panama populations of C. crassidigitus appear to have diverged in the Pliocene or earlier, suggesting that the dry forest separating these populations is old. Our phylogenetic analysis of 12 of approximately 16 species of the C. fitzingeri species group suggests that the three lowland species are each other's closest relatives. Because of this shared phylogenetic history, we attribute the striking differences in phylogeographical structure to the different ecologies of the frogs. In summary, we find that what appear to be minor differences in the natural history of these three closely related species may profoundly impact the potential for dispersal, range size, and cladogenesis.  相似文献   

10.
Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (D) of xylem and soil water, soil volumetric water content (v), and basal sap flow were measured during the 1997 and 1998 dry seasons. Sap flow of several neighboring trees was measured to assess differences between lianas and trees in magnitudes and patterns of daily sap flow. Little seasonal change in v was observed at 90–120 cm depth in both years. Mean soil water D during the dry season was –19 at 0–30 cm, –34 at 30–60 cm, and –50 at 90–120 cm. Average values of xylem D among the liana species ranged from –28 to –44 during the middle of the dry season, suggesting that water uptake was restricted to intermediate soil layers (30–60 cm). By the end of the dry season, all species exhibited more negative xylem D values (–41 to –62), suggesting that they shifted to deeper water sources. Maximum sap flux density in co-occurring lianas and trees were comparable at similar stem diameter (DBH). Furthermore, lianas and trees conformed to the same linear relationship between daily sap flow and DBH. Our observations that lianas tap shallow sources of soil water at the beginning of the dry season and that sap flow is similar in lianas and trees of equivalent stem diameter do not support the common assumptions that lianas rely primarily on deep soil water and that they have higher rates of sap flow than co-occurring trees of similar stem size.  相似文献   

11.
Nine dinucleotide microsatellites were developed in Astronium urundeuva (Anacardiaceae), a typical tree of the seasonally‐dry tropical forests of South America and characterized on three populations from Paraguay and Argentina. Seven microsatellites were found polymorphic in within population gene diversities ranging from 0.32 to 0.91, and an observed number of alleles varying between four and 20. Despite their relatively low number of alleles, these markers proved valuable tools in detecting genetic structure between three populations in Paraguay and North Argentina.  相似文献   

12.
Leaf litter samples of 12 dicotyledonous tree species (belonging to eight families) growing in a dry tropical forest and in early stages of decomposition were studied for the presence of litter fungi. Equal-sized segments of the leaves incubated in moist chambers were observed every day for 30 d for the presence of fungi. Invariably, the fungal assemblage on the litter of each tree species was dominated by a given fungal species. The diversity of fungi present in the litter varied with the tree species although many species of fungi occurred in the litter of all 12 species. A Pestalotiopsis species dominated the litter fungal assemblage of five trees and was common in the litter of all tree species. The present study and earlier studies from our lab indicate that fungi have evolved traits such as thermotolerant spores, ability to utilize toxic furaldehydes, ability to produce cell wall destructuring enzymes and an endophyte-litter fungus life style to survive and establish themselves in fire-prone forests such as the one studied here. This study shows that in the dry tropical forest, the leaf litter fungal assemblage is governed more by the environment than by the plant species.  相似文献   

13.
Phosphorus cycling in a Mexican tropical dry forest ecosystem   总被引:6,自引:4,他引:6  
The study was conducted in five contiguous small watersheds (12–28 ha) gauged for long-term ecosystem research. Five 80 × 30 m plots were used for the study. We quantified inputs from the atmosphere, dissolved and particulate-bound losses, throughfall and litterfall fluxes, standing crop litter and soil available P pools. Mean P input and output for a six-year period was 0.16 and 0.06 kgha–1yr–1, respectively. Phosphorus concentration increased as rainfall moved through the canopy. Annual P returns in litterfall (3.88 kg/ha) represented more than 90% of the total aboveground nutrient return to the forest floor. Phosphorus concentration in standing litter (0.08%) was lower than that in litterfall (0.11%). Phosphorus content in the litterfall was higher at Chamela than at other tropical dry forests. Mean residence time on the forest floor was 1.2 yr for P and 1.3 yr for organic matter. Together these results suggest that the forest at Chamela may not be limited by P availability and suggest a balance between P immobilization and uptake. Comparison of P losses in stream water with input rates from the atmosphere for the six-year period showed that inputs were higher than outputs. Balances calculated for a wet and a dry year indicated a small P accumulation in both years.  相似文献   

14.
Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.  相似文献   

15.
Biogeographic patterns of avifaunas associated with seasonally dry tropical forests in Mesoamerica are poorly understood despite their high levels of species richness and endemism. Through the parsimony analysis of endemicity, we analyzed biogeographic relationships of 650 resident species of birds associated with seasonally dry tropical forests from Mexico to Panama, based on potential distributions obtained through ecological niche modeling. Results show two general avifaunal groups, east and west of the Isthmus of Tehuantepec. Patterns of biogeographic distribution and species richness also helped illuminate the importance of key areas for birds associated to this habitat in the region.

Los patrones biogeográficos de las avifaunas asociadas a los bosques tropicales estacionalmente secos en Mesoamérica están pobremente entendidos, a pesar de que estas áreas poseen una gran riqueza de especies y endemismo. Analizamos las relaciones biogeográficas con base en distribuciones potenciales, hechas a partir de modelos del nicho ecológico usando el análisis de parsimonia de endemismos, de 650 especies de aves residentes asociadas a los bosques tropicales estacionalmente secos desde México hasta Panamá. Los resultados muestran dos grupos generales de la avifauna, al este y oeste del Istmo de Tehuantepec. El contexto biogeográfico y la riqueza de especies resalta también la importancia de áreas clave para las aves asociadas a este tipo de hábitat en la región.  相似文献   

16.
Resorption efficiency (RE) and proficiency, foliar nutrient concentrations, and relative soil nutrient availability were determined during 3 consecutive years in tree species growing under contrasting topographic positions (i.e., top vs. bottom and north vs. south aspect) in a tropical dry forest in Mexico. The sites differed in soil nutrient levels, soil water content, and potential radiation interception. Leaf mass per area (g m–2) increased during the growing season in all species. Soil P availability and mean foliar P concentrations were generally higher at the bottom than at the top site during the 3 years of the study. Leaf N concentrations ranged from 45.4 to 31.4 mg g–1. Leaf P varied from 2.3 to 1.8 mg g–1. Mean N and P RE varied among species, occasionally between top and bottom sites, and were higher in the dry than in the wet years of study. Senesced-leaf nutrient concentrations (i.e., a measure of resorption proficiency) varied from 13.7 to 31.2 mg g–1 (N) and 0.4 to 3.3 mg g–1 (P) among the different species and were generally indicative of incomplete nutrient resorption. Phosphorus concentrations in senesced leaves were higher at the bottom than at the top site and decreased from the wettest to the the driest year. Soil N and P availability were significantly different in the north- and south-facing slopes, but neither nutrient concentrations of mature and senesced leaves nor RE differed between aspects. Our results suggest that water more than soil nutrient availability controls RE in the Chamela dry forest, while resorption proficiency may be interactively controlled by both nutrient and water availability.  相似文献   

17.
We studied selected leaf traits [leaf area (LA), leaf water content (LWC), leaf fresh weight (LFW), leaf dry weight (LDW), specific leaf area (SLA) and chlorophyll content] of eight woody species (Shorea robusta, Buchanania lanzan, Diospyros melanoxylon, Lagerstroemia parviflora, Lannea coromandelica, Terminalia tomentosa, Holarrhena antidysenterica and Lantana camara) dominant at four sites in a dry tropical deciduous forest over complete two annual cycles (2008–2010). Our results showed that leaf traits varied across species (1.7–11.5 fold), months (1.2–1.5 fold) and sites (1.1–1.3 fold). However, leaf traits showed smaller variation between sites than between species. Leaf lifespan varied from 7 months (L. coromandelica) to 12 months (S. robusta). On the same sites, species differed in the length of deciduous period. The maximum LA, LDW, LFW and LWC were recorded for the semi-evergreen species, SLA for long-deciduous species and chlorophyll content for short-deciduous species, respectively. The coefficient of variation was maximum for LDW and minimum for chlorophyll content. Among the eight woody species, T. tomentosa exhibited the greatest LA, LDW, LFW and LWC. LA, LWC, LFW, LDW, SLA, LD, SD, MD & SE confirm.  相似文献   

18.
Aim Lianas are abundant and diverse throughout the world and constitute an important structural and functional component of tropical forests. This study aims to investigate liana diversity, abundance and their functional traits in Indian tropical dry evergreen forest (TDEF).Methods A total of ten 1-ha plots, one each in 10 Indian TDEF sites were demarcated. Each 1-ha plot was divided into one-hundred 10- × 10-m quadrats to facilitate woody species inventory. All lianas ≥1cm diameter measured at 130cm from the rooting point and all trees ≥10-cm girth at breast height (gbh) were recorded from the study sites to analyze the patterns of liana diversity and abundance and also to compare the contribution of lianas to the total woody species richness, density and basal area. Liana variables across the study sites were compared using one-way analysis of variance. The qualitative functional traits of inventoried lianas and trees were assessed on the field and referring to pertinent field manuals.Important findings A total of 9237 liana individuals (ranged from 408–1658 individuals ha-1) representing 52 species, 45 genera and 28 families were encountered from the 10 study sites. Liana species richness ranged from 11–31 species ha-1 in 10 sites, which averaged 23.4 (±5.7) species ha-1. The total basal area of lianas in the study sites was 7. 3 m 2 (0.20–1.76 m 2 ha-1). There was a significant variation in liana species richness, density and basal area across the studied sites. On the whole, lianas contributed 52%, 49.3% and 4.1% to the total woody species (lianas and trees) richness, density and basal area, respectively. Liana trait analysis revealed the majority (50%) of lianas belonged to brevi-deciduous type. Stem twining was the chief climbing mechanism, exhibited by 21 species (52.6% of total abundance). More than half of the liana species (34 species; 6925 individuals) had microphyllous leaves. Fleshy-fruited lianas mostly bearing berries and drupes constituted the major fruit type in the studied sites. Zoochory was the predominant dispersal mode observed in 63.4% of species. Considering the ecological and functional role of lianas in Indian TDEF, the need for conservation is emphasized.  相似文献   

19.
We estimated the fluxes, inputs and outputs of Ca, K,and Mg in a Mexican tropical dry forest. The studywas conducted in five contiguous small watersheds(12–28 ha) gauged for long-term ecosystem research. A total of five 80 × 30 m plots were used for thestudy. We quantified inputs from the atmosphere,dissolved and particulate-bound losses, throughfalland litterfall fluxes, and standing crop litter pools. Mean cation inputs for a six-year period were 3.03 kg/ha for Ca, 1.31 kg/ha for K, and 0.80 kg/ha for Mg. Mean outputs in runoff were 5.24, 2.83, and 1.79 kg/ha, respectively. Calcium, K, and Mgconcentrations increased as rainfall moved through thecanopy. Annual Ca return in the litterfall (11.4 g/m2) was much higher than K (2.3 g/m2)and Mg (1.6 g/m2). Litterfall represented 99%of the Ca, 84% of the Mg, and 53% of the K, totalaboveground return to the soil. Calcium concentrationin standing litter (3.87%) was much higher than K(0.38%) and Mg (0.37%). These concentrations werehigher (Ca), lower (K), or similar (Mg) to those inlitterfall. Residence times on the forest floor were0.86, 1.17, and 1.77 yr for K, Mg, and Carespectively. Compared to the residence time fororganic matter at the site (1.31 yr), these resultssuggest slow mineralization for Ca in this ecosystem. Budget estimates were calculated for a wet and a dryyear. Results indicated that nutrients accumulated inthe dry but that nutrients were lost during the wetyear. Comparison of Ca, K, and Mg losses in streamwater with the input rates from the atmosphere for thesix-year period show that inputs are lower thanoutputs in the Chamela tropical dry forestecosystem.  相似文献   

20.
Interannual variations of photosynthesis in tropical seasonally dry vegetation are one of the dominant drivers to interannual variations of atmospheric CO2 growth rate. Yet, the seasonal differences in the response of photosynthesis to climate variations in these ecosystems remain poorly understood. Here using Normalized Difference Vegetation Index (NDVI), we explored the response of photosynthesis of seasonally dry tropical vegetation to climatic variations in the dry and the wet seasons during the past three decades. We found significant (p < 0.01) differences between dry and wet seasons in the interannual response of photosynthesis to temperature (γint) and to precipitation (δint). γint is ~1% °C?1 more negative and δint is ~8% 100 mm?1 more positive in the dry season than in the wet season. Further analyses show that the seasonal difference in γint can be explained by background moisture and temperature conditions. Positive γint occurred in wet season where mean temperature is lower than 27°C and precipitation is at least 60 mm larger than potential evapotranspiration. Two widely used Gross Primary Productivity (GPP) estimates (empirical modeling by machine‐learning algorithm applied to flux tower measurements, and nine process‐based carbon cycle models) were examined for the GPP–climate relationship over wet and dry seasons. The GPP derived from empirical modeling can partly reproduce the divergence of γint, while most process models cannot. The overestimate by process models on negative impacts by warmer temperature during the wet season highlights the shortcomings of current carbon cycle models in representing interactive impacts of temperature and moisture on photosynthesis. Improving representations on soil water uptake, leaf temperature, nitrogen cycling, and soil moisture may help improve modeling skills in reproducing seasonal differences of photosynthesis–climate relationship and thus the projection for impacts of climate change on tropical carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号