首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
长江流域鱼类物种多样性大尺度格局研究   总被引:25,自引:0,他引:25  
作者以长江流域鱼类编目数据库为基础数据,研究了长江流域鱼类物种多样性的大尺度格局。长江流域内共记录了鱼类378种(亚种),隶属于14目32科144属。其中淡水鱼338种(亚种),以鲤形目为主,达到269种(亚种),洄游鱼类11种,河口鱼类29种;流域内特有种和受威胁物种分别有162种(亚种)和69种(亚种)。根据鱼类分布特点,按水系将长江流域分为19个区域,除了江源区和金沙江中上游外,物种数和G-F多样性指数上游高于中下游,但各区域内差异不大,然而特有种比例从上游到下游随海拔降低而逐渐降低。利用Jaccard物种相似性系数对19个区域进行聚类分析,将整个流域分成三部分:(1)江源区和金沙江中上游,地理上属于青藏高原东南部波状平原部分和横断山区,(2)上游其他流域,地理上属于川西高原、云贵高原、四川盆地及秦巴山区,(3)中下游流域,地理上属于淮阳山地、江南丘陵和长江中下游平原,基本反映了流域内自然地理环境及我国大陆地势三级台阶变化的特点。  相似文献   

2.
长江流域爬行动物物种多样性大尺度格局研究   总被引:9,自引:0,他引:9  
本文研究了长江流域爬行动物物种多样性的大尺度格局。长江流域内共记录了爬行动物166种,隶属于3目18科68属,特有种和濒危物种分别有24种和54种。根据陆生爬行动物分布特点,依据山系和水系将长江流域分为19个区域,虽然物种数和G-F指数在各区域内变化不大(江源区较低),但特有种比例从上游到下游随海拔降低逐渐降低;利用Jaccard物种相似性系数对长江流域内19个区域进行聚类分析,可以将整个流域分成五部分:江源区,横断山区和云南高原区,四川盆地和秦巴山区,贵州高原、江南丘陵、两湖平原和长江三角洲,鄱阳湖平原、长江下游平原和淮阳山地(汉江—大别山),基本反映了流域内自然地理环境及我国大陆地势三级台阶变化的特点。  相似文献   

3.
长江流域两栖动物物种多样性的大尺度格局   总被引:3,自引:1,他引:3       下载免费PDF全文
根据两栖动物分布依赖于水系的特点,依据主要水系将长江流域分为18个区域,共记录了两栖动物145种,隶属于2目10科30属,特有种和受威胁物种分别有49和69种。除了海拔最高的江源区和金沙江中上游流域外,两栖动物种类以及受威胁物种种类,从上游到下游逐渐降低,特有种比例同样从上游到下游随海拔降低逐渐降低;分析G-F多样性指数发现,G指数的分布与物种数分布规律相似,F指数与G-F指数相似,除了江源区、汉江和赣江较低外,其他区域内比较均匀。利用Jaccard物种相似性系数对流域内18个区域进行聚类分析,发现整个流域分成6部分江源区,横断山区,云贵高原,川西高原东缘、四川盆地和秦巴山区,洞庭湖水系、鄱阳湖流域和下游流域,以及赣江流域,基本反映了长江流域内自然地理环境及我国大陆地势三级台阶变化的特点。  相似文献   

4.
以数据为支撑的物种多样性空间分布是自然保护地适应性保护和管理的基础, 但当前大多数自然保护地缺乏全域物种多样性观测数据。本研究以钱江源国家公园全域663个20 m × 20 m木本植物样方调查数据为基础, 分析了国家公园内观测物种丰富度、稀疏物种丰富度、胸高断面积和树木个体数量的空间变化, 比较了这些变量在国家公园各功能区块间的差异。结果显示木本植物物种多样性的热点分布区与钱江源国家公园核心保护区基本匹配。两个物种丰富度在核心保护区古田山区块和长何齐区块及一般控制区古田-苏庄区块最大, 三者的观测物种丰富度无显著差异(P > 0.05), 古田山区块和古田-苏庄区块的稀疏物种丰富度无显著差异, 但均显著大于长何齐区块; 古田山区块和古田-苏庄区块的两个物种丰富度指标变异程度小于其他区块, 且这两个区块间无显著差异(P > 0.05)。齐溪区块、长何齐区块和古田山区块胸高断面积大于其他区块, 古田-苏庄区块次之, 前三者无显著差异, 古田-苏庄区块显著小于长何齐区块和古田山区块。古田山区块和古田-苏庄区块树木个体数量最小。长何齐区块齐溪片区部分胸高断面积大、个体数量小, 而在长虹和何田片区胸高断面积小、个体数量大。一般控制区长虹-何田区块和古田-洪源区块两个物种丰富度最小, 胸高断面积最小。结果表明, 从生物多样性角度来看钱江源国家公园的功能分区基本合理, 扩展了对国家公园物种多样性热点和保护空缺的认识: 古田山区块木本植物个体大、物种最丰富, 与其毗邻的一般控制区古田-苏庄区块物种同样丰富、个体略小, 可将其纳入保护核心区以利于钱江源国家公园主要生态系统完整性保护; 核心保护区长何齐区块长虹和何田片区物种多样性低、个体小、密度大, 待加强保护和修复; 长虹-何田区块和古田-洪源区块物种少、个体小、干扰强, 待社区发展和保护协同。本研究将为钱江源国家公园生物多样性适应性保护和管理提供科学支撑。  相似文献   

5.
地带性森林群落物种多样性的比较研究   总被引:58,自引:0,他引:58       下载免费PDF全文
在群落调查以及文献收集的基础上,对暖温带地区、暖温带和亚热带过渡地区、亚热带地区以及热带地区的典型地带笥植被不同群落类型群落多样性进行了分析和研究。结果发现这4类地区物种多样性的变化具有一定的规律性,具体表现在热带地区群落乔木层的物种丰富度和多样性为最高,然后依次是亚热带地区、秦蛉地区和东灵山地区;灌木层的物种丰富度和多样性则以亚热带地区为最高,其次是秦岭地区,热带地区的则仍高于东灵山地区;灌木层  相似文献   

6.
梧桐山甲虫物种多样性   总被引:22,自引:2,他引:20  
报道了深圳市梧桐山岗景区鞘翅目昆虫多样性的研究结果。梧桐山鞘翅目在不同季节的变化动态研究表明6、7月份是鞘翅目成虫出现的高峰期。应用Margalef物种丰富度模型及Shannon Weiner生物多样性指数分析了该地鞘翅目物种的丰富度及多样性。结果表明梧桐山的鞘翅目昆虫物种组成为丰富型,相当高的多样性指数说明梧桐山的生态环境良好。  相似文献   

7.
苏南主要森林类型的生物多样性调查与比较研究   总被引:12,自引:1,他引:12  
维护生物多样性是森林的重要功能之一,也是森林可持续发展的重要内容。森林生态系统具有高生物多样性的特点,是生物多样性保护的重要领域。保护生物多样性的目的在于生物资源的持续增长和人类对生物资源的持续利用,以满足实施持续发展战略的需要。过去生物多样性的保护...  相似文献   

8.
生物多样性与生态系统功能:进展与争论   总被引:50,自引:4,他引:50  
生物多样性与生态系统功能的关系已成为当前人类社会面临的一个重大科学问题,生物多样性的空前丧失,促使人们开展了大量研究工作来描述物种多样性-生态系统功能关系,并试图揭示多样性与系统功能关系的内在机制,本文将多样性对生态系统功能作用机制的有关假说分为统计学与生物学两大类:前者是从统计学角度来解释观察到的多样性-系统功能模式,包括抽样效应,统计均衡效应等;而后者是基于多样性的生物学效应给出的,包括生态位互补,种间正相互作用,保险效应等,本文较为详细地介绍了该领域内有代表性的实验工作,包括“生态箱”实验,Cedar Creek草地多样性实验,微宇宙实验,欧洲草地实验,以及在这些实验结果解释上的激烈争论。  相似文献   

9.
生物多样性综合评价方法研究   总被引:41,自引:0,他引:41  
2002年召开的《生物多样性公约》第六次缔约方大会确定了“到2010年在全球范围内大幅度降低生物多样性丧失的速度”的目标, 并要求各国制定生物多样性评价指标, 开展生物多样性评估。本文作者根据科学性、代表性和实用性的原则, 提出了生物多样性综合评价的5个指标, 即物种丰富度、生态系统类型多样性、植被垂直层谱的完整性、物种特有性、外来物种入侵度, 确立了生物多样性综合评价方法; 并以全国31省(市、区)为单元, 开展了全国生物多样性综合评价, 将各省(市、区)生物多样性分为四个等级。云南、四川、广西的生物多样性属“优”, 贵州、湖北、广东、湖南、重庆、福建、西藏、江西、浙江、海南、甘肃、新疆、陕西的生物多样性属“良”, 河南、安徽、山东、山西、河北、北京的生物多样性属“一般”, 吉林、内蒙古、上海、辽宁、宁夏、青海、江苏、黑龙江、天津的生物多样性为“较差”。  相似文献   

10.
长白山主要生态系统苔藓植物的多样性研究   总被引:36,自引:0,他引:36  
长白山地区共有苔藓植物65科179属437种,32个变种和亚种。其中,石生和岩面薄土生种类(saxicolous bryophyte)最丰富,其次为腐木生种类(saprophytic bryophyte)和树生种类(epiphyticbryophyte),再次为土生种类(soil and humus bryophyte)。沼泽地、水体等生境中的种类(peat,marsh and water bry  相似文献   

11.
12.
    
Describing spatial variation in species richness and understanding its links to ecological mechanisms are complementary approaches for explaining geographical patterns of richness. The study of elevational gradients holds enormous potential for understanding the factors underlying global diversity. This paper investigates the pattern of species richness and range-size distribution of epiphytic bryophytes along an elevational gradient in Marojejy National Park, northeast Madagascar. The main objectives are to describe bryophyte species composition and endemism in Marojejy National Park, to describe the species richness and distribution patterns of epiphytic bryophytes along an elevational gradient from 250 m to 2050 m and to evaluate the explanatory value of environmental variables for the observed patterns. Bryophyte samples were collected following a nested design with four hierarchical levels: elevational belts, plots, quadrats, and microplots. In total, 254 epiphytic bryophyte species were recorded, comprising 157 liverworts and 97 mosses. Twenty-three of these are endemic to Madagascar. Species richness exhibits a hump-shaped pattern along the elevational gradient, peaking at 1,250 m. Eighty-seven percent of the total recorded species have a range distribution lower than 1,000 m, at which point 36% are restricted to these single elevations. Our results suggest that mean temperature, relative humidity, and vapor pressure deficit play important roles in shaping the richness pattern observed in this study. While the liverwort richness pattern did not correlate to vapor pressure deficit and responded only weakly to relative humidity, the richness pattern shown by mosses correlates well with mean temperature, relative humidity, and vapor pressure deficit.  相似文献   

13.
    
Humans have elevated global extinction rates and thus lowered global scale species richness. However, there is no a priori reason to expect that losses of global species richness should always, or even often, trickle down to losses of species richness at regional and local scales, even though this relationship is often assumed. Here, we show that scale can modulate our estimates of species richness change through time in the face of anthropogenic pressures, but not in a unidirectional way. Instead, the magnitude of species richness change through time can increase, decrease, reverse, or be unimodal across spatial scales. Using several case studies, we show different forms of scale‐dependent richness change through time in the face of anthropogenic pressures. For example, Central American corals show a homogenization pattern, where small scale richness is largely unchanged through time, while larger scale richness change is highly negative. Alternatively, birds in North America showed a differentiation effect, where species richness was again largely unchanged through time at small scales, but was more positive at larger scales. Finally, we collated data from a heterogeneous set of studies of different taxa measured through time from sites ranging from small plots to entire continents, and found highly variable patterns that nevertheless imply complex scale‐dependence in several taxa. In summary, understanding how biodiversity is changing in the Anthropocene requires an explicit recognition of the influence of spatial scale, and we conclude with some recommendations for how to better incorporate scale into our estimates of change.  相似文献   

14.
This paper presents models based on empirical data which can be used to predict the patterns of species richness of vascular plants at the poorly explored mesoscale. Using generalized linear modelling, multiple regression models of species richness in the Kevo Nature Reserve, North Finland, are built with a training set of 257 grid squares and 33 environmental variables. We validated the accuracy of the derived models with an independent test set of 100 grid squares. Two different modelling approaches are used: one where species richness is treated straightforwardly as the response variable, and another where it is tentatively stratified into two groups according to taxon types, i.e. alpine taxa versus wide-spread and silvine (forest) taxa. However, the latter approach only marginally improved the accuracy of the predictions of total number of species. Linear altitudinal variables were among the best predictors of vascular plant richness at the mesoscale. As variables involving altitude are crude surrogates for energy-related factors, the results support the available energy hypothesis and advocate its significance in richness-environment relationships. Other important predictors of species richness included length of rivers and brooks, abundance of cliff walls, occurrences of steep-sided gorges and valleys, and relative abundance of gabbro in bedrock. However, the accuracy of the predictions in the derived models is relatively modest. This points towards the necessity of field work as a final guarantee to identify local hotspots of vascular plant species in a subarctic landscape. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
    

Aim

Understanding connections between environment and biodiversity is crucial for conservation, identifying causes of ecosystem stress, and predicting population responses to changing environments. Explaining biodiversity requires an understanding of how species richness and environment covary across scales. Here, we identify scales and locations at which biodiversity is generated and correlates with environment.

Location

Full latitudinal range per continent.

Time Period

Present day.

Major Taxa Studied

Terrestrial vertebrates: all mammals, carnivorans, bats, songbirds, hummingbirds, amphibians.

Methods

We describe the use of wavelet power spectra, cross-power and coherence for identifying scale-dependent trends across Earth's surface. Spectra reveal scale- and location-dependent coherence between species richness and topography (E), mean annual precipitation (Pn), temperature (Tm) and annual temperature range (ΔT).

Results

>97% of species richness of taxa studied is generated at large scales, that is, wavelengths 10 3 km, with 30%–69% generated at scales 10 4 km. At these scales, richness tends to be highly coherent and anti-correlated with E and ΔT, and positively correlated with Pn and Tm. Coherence between carnivoran richness and ΔT is low across scales, implying insensitivity to seasonal temperature variations. Conversely, amphibian richness is strongly anti-correlated with ΔT at large scales. At scales 10 3 km, examined taxa, except carnivorans, show highest richness within the tropics. Terrestrial plateaux exhibit high coherence between carnivorans and E at scales 10 3 km, consistent with contribution of large-scale tectonic processes to biodiversity. Results are similar across different continents and for global latitudinal averages. Spectral admittance permits derivation of rules-of-thumb relating long-wavelength environmental and species richness trends.

Main Conclusions

Sensitivities of mammal, bird and amphibian populations to environment are highly scale dependent. At large scales, carnivoran richness is largely independent of temperature and precipitation, whereas amphibian richness correlates strongly with precipitation and temperature, and anti-correlates with temperature range. These results pave the way for spectral-based calibration of models that predict biodiversity response to climate change scenarios.  相似文献   

16.
空间尺度是影响我们理解生态学格局和过程的关键因素.目前已有多种关于物种多样性分布格局形成机制的假说且研究者未达成共识,原因之一是空间尺度对物种多样性分布格局的环境影响因子的解释力和相对重要性有重要影响.地形异质性是物种多样性分布格局的重要影响因素.本文综述了在地形异质性-物种多样性关系的研究中,不同空间粒度和幅度对研究...  相似文献   

17.
The total number of insect species in the world is an important if elusive figure. We use a fresh approach to estimate global insect species richness, based on biogeographic patterns of diversity of well or better documented taxa. Estimates generated by various calculations, all variations on a theme, largely serve to substantiate suggestions that insect species are likely to number around 10 million or less.  相似文献   

18.
    
Although we understand how species evolve, we do not appreciate how this process has filled an empty world to create current patterns of biodiversity. Here, we conduct a numerical experiment to determine why biodiversity varies spatially on our planet. We show that spatial patterns of biodiversity are mathematically constrained and arise from the interaction between the species’ ecological niches and environmental variability that propagates to the community level. Our results allow us to explain key biological observations such as (a) latitudinal biodiversity gradients (LBGs) and especially why oceanic LBGs primarily peak at midlatitudes while terrestrial LBGs generally exhibit a maximum at the equator, (b) the greater biodiversity on land even though life first evolved in the sea, (c) the greater species richness at the seabed than at the sea surface, and (d) the higher neritic (i.e., species occurring in areas with a bathymetry lower than 200 m) than oceanic (i.e., species occurring in areas with a bathymetry higher than 200 m) biodiversity. Our results suggest that a mathematical constraint originating from a fundamental ecological interaction, that is, the niche–environment interaction, fixes the number of species that can establish regionally by speciation or migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号