首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid selenocysteine (Sec) is the major biological form of the trace element selenium. Sec is co-translationally incorporated in selenoproteins. There are 25 selenoprotein genes in humans, and Sec was found in the active site of those that have been attributed a function. This review will discuss how selenocysteine is synthesized and incorporated into selenoproteins in eukaryotes. Sec biosynthesis from serine on the tRNASec requires four enzymes. Incorporation of Sec in response to an in-frame UGA codon, otherwise signaling termination of translation, is achieved by a complex recoding machinery to inform the ribosomes not to stop at this position on the mRNA. A number of the molecular partners acting in this machinery have been identified but their detailed mechanism of action has not been deciphered yet. Here we provide an overview of the literature in the field. Particularly striking is the higher than originally envisaged number of factors necessary to synthesize Sec and selenoproteins. Clearly, selenoprotein synthesis is an exciting and very active field of research.  相似文献   

2.
The essential micronutrient selenium is found in proteins as selenocysteine (Sec), the only genetically encoded amino acid whose biosynthesis occurs on its cognate tRNA in humans. In the final step of selenocysteine formation, the essential enzyme SepSecS catalyzes the conversion of Sep-tRNA to Sec-tRNA. We demonstrate that SepSecS mutations cause autosomal-recessive progressive cerebellocerebral atrophy (PCCA) in Jews of Iraqi and Moroccan ancestry. Both founder mutations, common in these two populations, disrupt the sole route to the biosynthesis of the 21st amino acid, Sec, and thus to the generation of selenoproteins in humans.  相似文献   

3.
Molecular biology of selenium with implications for its metabolism.   总被引:3,自引:0,他引:3  
R F Burk 《FASEB journal》1991,5(9):2274-2279
Selenium has a highly specific metabolism centered around its incorporation as selenocysteine into selenoproteins. An outline of this metabolism has emerged from recent molecular biological and biochemical studies of bacteria and animals. A unique tRNA, designated tRNA[Ser]Sec, is charged with L-serine, which is then converted through at least two steps to selenocysteine. With the aid of a unique translation factor, the selenocysteinyl-tRNA[Ser]Sec recognizes specific UGA codons in mRNA to insert selenocysteine into the primary structure of selenoproteins. Turnover of selenoproteins presumably liberates selenocysteine which is toxic in its free form. Selenocysteine beta-lyase catabolizes free selenocysteine and makes its selenium available for reuse. Proteins contain almost all the selenium in animals. Of the known selenoproteins, the glutathione peroxidases contain the most selenium. Cellular and plasma glutathione peroxidases are products of different genes but have 44% identity of amino acid sequence. There is evidence for other proteins of this family. Selenoprotein P is an unrelated protein with multiple selenocysteines in its primary structure. It contains most of the selenium in rat plasma. Studies of the regulation of cellular glutathione peroxidase by selenium have yielded conflicting results, but there is a strong suggestion that mRNA levels of the rodent liver glutathione peroxidase decrease in selenium deficiency. This could be a mechanism for directing selenium to the synthesis of other selenoproteins. Although present knowledge allows construction of an outline of selenium metabolism, several steps have not been characterized and little is known about mechanisms of its regulation.  相似文献   

4.
The discovery of two atypical amino acids, selenocysteine and pyrrolysine, in the genetic code is discussed. These findings have expanded our understanding of the genetic code, since the repertoire of amino acids in the genetic code was supplemented by two novel ones, in addition of the standard 20 amino acids. Current views on specific mechanisms of selenocysteine insertion in forming selenoproteins are considered, as well as the results of studies of new translational components involved in biosynthesis and incorporation of selenocysteine at different stages of translation. Similarity in the strategies of decoding UGA and UAG as codons for respectively selenocysteine and pyrrolysine is discussed. The review also presents evidence on the medical and biological role of selenium and selenoproteins containing selenocysteine as the main biological form of selenium.  相似文献   

5.
Selenium in biology: facts and medical perspectives   总被引:10,自引:0,他引:10  
Several decades after the discovery of selenium as an essential trace element in vertebrates approximately 20 eukaryotic and more than 15 prokaryotic selenoproteins containing the 21st proteinogenic amino acid, selenocysteine, have been identified, partially characterized or cloned from several species. Many of these proteins are involved in redox reactions with selenocysteine acting as an essential component of the catalytic cycle. Enzyme activities have been assigned to the glutathione peroxidase family, to the thioredoxin reductases, which were recently identified as selenoproteins, to the iodothyronine deiodinases, which metabolize thyroid hormones, and to the selenophosphate synthetase 2, which is involved in selenoprotein biosynthesis. Prokaryotic selenoproteins catalyze redox reactions and formation of selenoethers in (stress-induced) metabolism and energy production of E. coli, of the clostridial cluster XI and of other prokaryotes. Apart from the specific and complex biosynthesis of selenocysteine, selenium also reversibly binds to proteins, is incorporated into selenomethionine in bacteria, yeast and higher plants, or posttranslationally modifies a catalytically essential cysteine residue of CO dehydrogenase. Expression of individual eukaryotic selenoproteins exhibits high tissue specificity, depends on selenium availability, in some cases is regulated by hormones, and if impaired contributes to several pathological conditions. Disturbance of selenoprotein expression or function is associated with deficiency syndromes (Keshan and Kashin-Beck disease), might contribute to tumorigenesis and atherosclerosis, is altered in several bacterial and viral infections, and leads to infertility in male rodents.  相似文献   

6.
7.
Selenocysteine: the 21st amino acid   总被引:33,自引:2,他引:31  
Great excitement was elicited in the field of selenium biochemistry in 1986 by the parallel discoveries that the genes encoding the selenoproteins glutathione peroxidase and bacterial formate dehydrogenase each contain an in-frame TGA codon within their coding sequence. We now know that this codon directs the incorporation of selenium, in the form of selenocysteine, into these proteins. Working with the bacterial system has led to a rapid increase in our knowledge of selenocysteine biosynthesis and to the exciting discovery that this system can now be regarded as an expansion of the genetic code. The prerequisites for such a definition are co-translational insertion into the polypeptide chain and the occurrence of a tRNA molecule which carries selenocysteine. Both of these criteria are fulfilled and, moreover, tRNASec even has its own special translation factor which delivers it to the translating ribosome. It is the aim of this article to review the events leading to the elucidation of selenocysteine as being the 21st amino acid.  相似文献   

8.
9.
Selenocysteine-containing proteins in mammals   总被引:12,自引:0,他引:12  
Since the recent discovery of selenocysteine as the 21st amino acid in protein, the field of selenium biology has rapidly expanded. Twelve mammalian selenoproteins have been characterized to date and each contains selenocysteine that is incorporated in response to specific UGA code words. These selenoproteins have different cellular functions, but in those selenoproteins for which the function is known, selenocysteine is located at the active center. The presence of selenocysteine at critical sites in naturally occurring selenoproteins provides an explanation for the important role of selenium in human health and development. This review describes known mammalian selenoproteins and discusses recent developments and future directions in the selenium field.  相似文献   

10.
Selenoprotein P is a plasma protein recently purified and characterized as containing 7.5 +/- 1.0 selenium atoms/molecule as selenocysteine. In rats maintained on a defined diet containing nutritionally adequate amounts of selenate as the sole selenium source, over half the selenium in plasma is accounted for by selenoprotein P. Its cDNA has been cloned from a rat liver library and sequenced. The sequence is highly unusual, containing 10 TGA codons in its open reading frame prior to the TAA termination codon. TGA designates selenocysteine in other selenoproteins, and limited peptide sequencing that included the amino acids encoded by two of the TGA codons verified that they correspond to selenocysteine. The deduced 366-amino acid sequence is histidine- and cysteine-rich and contains 9 of its selenocysteines in the terminal 122 amino acids. Comparison of the deduced amino acid sequence of selenoprotein P with those of other selenoprotein reveals no significant similarities. Selenoprotein P represents a new class of selenoproteins and is the first protein described with more than 1 selenocysteine in a single polypeptide chain. The primary structure of selenoprotein P suggests that it might be responsible for some of the antioxidant properties of selenium.  相似文献   

11.
Selenium is an essential trace element for which both beneficial and toxic effects in human health have been described. It is now clear that the importance of having adequate amounts of this micronutrient in the diet is primarily due to the fact that selenium is required for biosynthesis of selenocysteine, the twenty first naturally occurring amino acid in protein. In this review, we provide an overview of eukaryotic selenoproteins and selenoproteomes, which are sets of selenoproteins in these organisms. In eukaryotes, selenoproteins show a mosaic occurrence, with some organisms, such as vertebrates and algae, having dozens of these proteins, while other organisms, such as higher plants and fungi, having lost all selenoproteins during evolution. We also discuss selenoprotein functions and evolutionary trends in the use of these proteins in eukaryotes. Functional analysis of selenoproteins is critical for better understanding of the role of selenium in human health and disease.  相似文献   

12.
In the genetic code, UGA serves as either a signal for termination or a codon for selenocysteine (Sec). Sec rarely occurs in protein and is different from other amino acids in that much of the biosynthetic machinery governing its incorporation into protein is unique to this amino acid. Sec-containing proteins have diverse functions and lack a common amino acid motif or consensus sequence. Sec has previously been considered to be a relic of the primordial genetic code that was counter-selected by the presence of oxygen in the atmosphere. In the present report, it is proposed that Sec was added to the already existing genetic code and its use has accumulated during evolution of eukaryotes culminating in vertebrates. The more recently evolved selenoproteins appear to take advantage of unique redox properties of Sec that are superior to those of Cys for specific biological functions. Further understanding of the evolution of selenoproteins as well as biological properties and biomedical applications of the trace element selenium requires identification and functional characterization of all mammalian selenoproteins.  相似文献   

13.
Squires JE  Berry MJ 《IUBMB life》2008,60(4):232-235
Selenium is an essential micronutrient that has been linked to various aspects of human health. Selenium exerts its biological activity through the incorporation of the amino acid, selenocysteine (Sec), into a unique class of proteins termed selenoproteins. Sec incorporation occurs cotranslationally at UGA codons in archaea, prokaryotes, and eukaryotes. UGA codons specify Sec coding rather than termination by the presence of specific secondary structures in mRNAs termed selenocysteine insertion (SECIS) elements, and trans-acting factors that associate with SECIS elements. Herein, we discuss the various proteins known to function in eukaryotic selenoprotein biosynthesis, including several players whose roles have only been elucidated very recently.  相似文献   

14.
硒蛋白的分子生物学研究进展   总被引:18,自引:0,他引:18  
已有35种硒蛋白被分离和表征,但许多硒蛋白及其功能仍未完全阐明.硒半胱氨酸(Sec)作为参入蛋白质的第21种氨基酸,由硒蛋白mRNA上的UGA编码.在原核生物,Sec参入硒蛋白的复杂机制已经较为明确,需要四种基因产物(SELA、SELB、SELC和SELD)和一个存在于硒蛋白mRNA上的被称为Sec插入序列(SECIS)的茎环(stem loop)样二级结构.在真核生物,硒蛋白生物合成途径可能在SECIS的结构和位置、特异的延伸因子及其他RNA-RNA或RNA-蛋白质因子之间的相互作用等方面与原核生物不同.另外,哺乳动物硒蛋白mRNA上的UGA翻译为Sec的过程低效,特定位点的UGA密码子不同功能(终止密码和Sec密码)的调控可能是硒蛋白表达低效的关键.  相似文献   

15.
Selenium (Se) is an essential micronutrient. Its biological functions are associated with selenoproteins, which contain this trace element in the form of the 21st amino acid, selenocysteine. Genetic defects in selenocysteine insertion into proteins are associated with severe health issues. The consequences of selenoprotein deficiency are more variable, with several selenoproteins being essential, and several showing no clear phenotypes. Much of these functional studies benefited from the use of rodent models and diets employing variable levels of Se. This review summarizes the data obtained with these models, focusing on mouse models with targeted expression of individual selenoproteins and removal of individual, subsets or all selenoproteins in a systemic or organ-specific manner. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

16.
The essential micronutrient selenium (Se) exerts its biological effects mainly through enzymatically active selenoproteins. Their biosynthesis depends on the 21st proteinogenic amino acid selenocysteine and thus on dietary Se supply. Hepatically derived selenoprotein P (SEPP) is the central selenoprotein in blood controlling Se transport and distribution. Kidney-derived extracellular glutathione peroxidase is another relevant serum selenoprotein depending on SEPP for biosynthesis. Therefore, secretion of SEPP by hepatocytes is crucial to convert nutritional sources into serum Se, supporting Se status and selenoprotein biosynthesis in other tissues.In order to compare the bioactivity of 10 different selenocompounds, their dose-dependent toxicities and nutritional qualities to support SEPP and glutathione peroxidase biosynthesis were determined in a murine and two human liver cell lines. Characteristic dose- and time-dependent effects on viability and SEPP production were observed. Incubations with 100 nM sodium selenite, l- or dl-selenocystine, selenodiglutathione or selenomethyl-selenocysteine increased SEPP concentrations in the culture medium up to 6.5-fold over control after 72 h. In comparison, sodium selenate, l- or dl-selenomethionine or methylseleninic acid was less effective and increased SEPP by 2.5-fold under these conditions. As expected, ebselen did not increase selenoprotein production, supporting its classification as a stable selenocompound. Methylseleninic acid, l-selenocystine, selenodiglutathione or selenite induced cell death in micromolar concentrations, whereas selenomethionine or ebselen was not toxic within the concentration range tested.Our results indicate that hepatic selenoprotein production and toxicity of selenocompounds do not correlate with and rather represent compound-specific properties. The favourable profile of selenomethylselenocysteine warrants its consideration as a promising option for supplementation purposes.  相似文献   

17.
Sec (selenocysteine) is biosynthesized on its tRNA and incorporated into selenium-containing proteins (selenoproteins) as the 21st amino acid residue. Selenoprotein synthesis is dependent on Sec tRNA and the expression of this class of proteins can be modulated by altering Sec tRNA expression. The gene encoding Sec tRNA (Trsp) is a single-copy gene and its targeted removal in liver demonstrated that selenoproteins are essential for proper function wherein their absence leads to necrosis and hepatocellular degeneration. In the present study, we found that the complete loss of selenoproteins in liver was compensated for by an enhanced expression of several phase II response genes and their corresponding gene products. The replacement of selenoprotein synthesis in mice carrying mutant Trsp transgenes, wherein housekeeping, but not stress-related selenoproteins are expressed, led to normal expression of phase II response genes. Thus the present study provides evidence for a functional link between housekeeping selenoproteins and phase II enzymes.  相似文献   

18.
19.
A regulatory role for Sec tRNA[Ser]Sec in selenoprotein synthesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Selenium is biologically active through the functions of selenoproteins that contain the amino acid selenocysteine. This amino acid is translated in response to in-frame UGA codons in mRNAs that include a SECIS element in its 3' untranslated region, and this process requires a unique tRNA, referred to as tRNA([Ser]Sec). The translation of UGA as selenocysteine, rather than its use as a termination signal, is a candidate restriction point for the regulation of selenoprotein synthesis by selenium. A specialized reporter construct was used that permits the evaluation of SECIS-directed UGA translation to examine mechanisms of the regulation of selenoprotein translation. Using SECIS elements from five different selenoprotein mRNAs, UGA translation was quantified in response to selenium supplementation and alterations in tRNA([Ser]Sec) levels and isoform distributions. Although each of the evaluated SECIS elements exhibited differences in their baseline activities, each was stimulated to a similar extent by increased selenium or tRNA([Ser]Sec) levels and was inhibited by diminished levels of the methylated isoform of tRNA([Ser]Sec) achieved using a dominant-negative acting mutant tRNA([Ser]Sec). tRNA([Ser]Sec) was found to be limiting for UGA translation under conditions of high selenoprotein mRNA in both a transient reporter assay and in cells with elevated GPx-1 mRNA. This and data indicating increased amounts of the methylated isoform of tRNA([Ser]Sec) during selenoprotein translation indicate that it is this isoform that is translationally active and that selenium-induced tRNA methylation is a mechanism of regulation of the synthesis of selenoproteins.  相似文献   

20.
Selenium shares many chemical facets with sulphur but differs from it in the redox potential, especially of the Se2−/S2− oxidation state. The higher chemical reactivity of the deprotonated selenol has been used by Biology in the synthesis of the amino acid selenocysteine and its DNA-encoded incorporation into specific positions of proteins to enhance their structural role or their activity. Since selenocysteine is a steric isomer of cysteine, numerous control mechanisms have been developed which prevent cross-intrusion of the elements during biosynthesis and insertion. As described in this review, these fidelity steps occur at the genetic, biochemical and physiological level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号