首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One potential evolutionary response to environmental heterogeneity is the production of randomly variable offspring through developmental instability, a type of bet‐hedging. I used an individual‐based, genetically explicit model to examine the evolution of developmental instability. The model considered both temporal and spatial heterogeneity alone and in combination, the effect of migration pattern (stepping stone vs. island), and life‐history strategy. I confirmed that temporal heterogeneity alone requires a threshold amount of variation to select for a substantial amount of developmental instability. For spatial heterogeneity only, the response to selection on developmental instability depended on the life‐history strategy and the form and pattern of dispersal with the greatest response for island migration when selection occurred before dispersal. Both spatial and temporal variation alone select for similar amounts of instability, but in combination resulted in substantially more instability than either alone. Local adaptation traded off against bet‐hedging, but not in a simple linear fashion. I found higher‐order interactions between life‐history patterns, dispersal rates, dispersal patterns, and environmental heterogeneity that are not explainable by simple intuition. We need additional modeling efforts to understand these interactions and empirical tests that explicitly account for all of these factors.  相似文献   

2.
Priyanga Amarasekare 《Oikos》2016,125(4):514-525
Much is known about the evolution of dispersal when species interact with their resources or natural enemies, but very little is known about dispersal evolution when species interact with both resources and natural enemies. Here I investigate how the dispersal of an intermediate consumer evolves in response to its interactions with a basal resource and top predator. I find that dispersal evolution is possible even when the consumer species is not directly affected by environmental variability, but rather experiences the consequences that such variability has on its resource and predator. Spatial variation in the consumer's fitness is driven by spatial heterogeneity in resource productivity, which determines whether a predator can colonize a resource‐consumer community. Temporal variation in the consumer's fitness is driven by random disturbances that cause periodic local extinctions of the predator, followed by recolonizations that lead to transient fluctuations in consumer abundance. When spatial variation in resource productivity is low and the predator can colonize all patches in the landscape, there is no spatial variation in consumer fitness but temporal variation in fitness favors the evolution of a dispersal monomorphism. When spatial variation in resource productivity is high and the predator cannot colonize many patches in the landscape, spatial variation in fitness selects against dispersal. In this case, temporal variation can promote the evolution of a dispersal polymorphism with sedentary and mobile phenotypes, but only for certain types of tri‐trophic interactions. This finding underscores the importance of indirect interactions in shaping the evolution of dispersal. While the ecological community can provide a strong selective environment for the evolution of dispersal, the nature of interactions between trophic levels can also impose constraints on evolution.  相似文献   

3.
Prior ecological research has shown that spatial processes can enhance the temporal stability of populations in fluctuating environments. Less explored is the effect of dispersal on rapid adaptation and its concomitant impact on population dynamics. For asexually reproducing populations, theory predicts that dispersal in fluctuating environments can facilitate asynchrony among clones and enhance stability by reducing temporal variability of total population abundance. This effect is predicted when clones exhibit heritable variation in environmental optima and when fluctuations occur asynchronously among patches. We tested this in the field using artificial ponds and metapopulations composed of a diverse assemblage of Daphnia pulex clones. We directly manipulated dispersal presence/absence and environmental fluctuations in the form of nutrient pulses. Consistent with predictions, dispersal enhanced temporal asynchrony among clones in the presence of nutrient pulses; this in turn stabilized population dynamics. This effect only emerged when patches experienced spatially asynchronous nutrient pulses (dispersal had no effect when patches were synchronously pulsed). Clonal asynchrony was driven by strong positive selection for a single clone that exhibited a performance advantage under conditions of low resource availability. Our work highlights the importance of dispersal as a driver of eco-evolutionary dynamics and population stability in variable environments.  相似文献   

4.
Disentangling the mechanisms that maintain the stability of communities and ecosystem properties has become a major research focus in ecology in the face of anthropogenic environmental change. Dispersal plays a pivotal role in maintaining diversity in spatially subdivided communities, but only a few experiments have simultaneously investigated how dispersal and environmental fluctuation affect community dynamics and ecosystem stability. We performed an experimental study using marine phytoplankton species as model organisms to test these mechanisms in a metacommunity context. We established three levels of dispersal and exposed the phytoplankton to fluctuating light levels, where fluctuations were either spatially asynchronous or synchronous across patches of the metacommunity. Dispersal had no effect on diversity and ecosystem function (biomass), while light fluctuations affected both evenness and community biomass. The temporal variability of community biomass was reduced by fluctuating light and temporal beta diversity was influenced interactively by dispersal and fluctuation, whereas spatial variability in community biomass and beta diversity were barely affected by treatments. Along the establishing gradient of species richness and dominance, community biomass increased but temporal variability of biomass decreased, thus highest stability was associated with species-rich but highly uneven communities and less influenced by compensatory dynamics. In conclusion, both specific traits (dominance) and diversity (richness) affected the stability of metacommunities under fluctuating conditions.  相似文献   

5.
Although pervasive, the impact of temporal environmental heterogeneity on coevolutionary processes is poorly understood. Productivity is a key temporally heterogeneous variable, and increasing productivity has been shown to increase rates of antagonistic arms race coevolution, and lead to the evolution of more broadly resistant hosts and more broadly infectious parasites. We investigated the effects of the grain of environmental heterogeneity, in terms of fluctuations in productivity, on bacteria–phage coevolution. Our findings demonstrate that environmental heterogeneity could constrain antagonistic coevolution, but that its effect was dependent upon the grain of heterogeneity, such that both the rate and extent of coevolution were most strongly limited in fine-grained, rapidly fluctuating heterogeneous environments. We further demonstrate that rapid environmental fluctuations were likely to have impeded selective sweeps of resistance alleles, which occurred over longer durations than the fastest, but not the slowest, frequency of fluctuations used. Taken together our results suggest that fine-grained environmental heterogeneity constrained the coevolutionary arms race by impeding selective sweeps.  相似文献   

6.
Most natural environments exhibit a substantial component of random variation, with a degree of temporal autocorrelation that defines the color of environmental noise. Such environmental fluctuations cause random fluctuations in natural selection, affecting the predictability of evolution. But despite long-standing theoretical interest in population genetics in stochastic environments, there is a dearth of empirical estimation of underlying parameters of this theory. More importantly, it is still an open question whether evolution in fluctuating environments can be predicted indirectly using simpler measures, which combine environmental time series with population estimates in constant environments. Here we address these questions by using an automated experimental evolution approach. We used a liquid-handling robot to expose over a hundred lines of the micro-alga Dunaliella salina to randomly fluctuating salinity over a continuous range, with controlled mean, variance, and autocorrelation. We then tracked the frequencies of two competing strains through amplicon sequencing of nuclear and choloroplastic barcode sequences. We show that the magnitude of environmental fluctuations (determined by their variance), but also their predictability (determined by their autocorrelation), had large impacts on the average selection coefficient. The variance in frequency change, which quantifies randomness in population genetics, was substantially higher in a fluctuating environment. The reaction norm of selection coefficients against constant salinity yielded accurate predictions for the mean selection coefficient in a fluctuating environment. This selection reaction norm was in turn well predicted by environmental tolerance curves, with population growth rate against salinity. However, both the selection reaction norm and tolerance curves underestimated the variance in selection caused by random environmental fluctuations. Overall, our results provide exceptional insights into the prospects for understanding and predicting genetic evolution in randomly fluctuating environments.  相似文献   

7.
The color of noise and the evolution of dispersal   总被引:2,自引:0,他引:2  
The process of dispersal is vital for the long-term persistence of all species and hence is a ubiquitous characteristic of living organisms. A present challenge is to increase our understanding of the factors that govern the dispersal rate of individuals. Here I extend previous work by incorporating both spatial and temporal heterogeneity in terms of patch quality into a spatially explicit lattice model. The spatial heterogeneity is modeled as a two-dimensional fractal landscape, while temporal heterogeneity is included by using one-dimensional noise. It was found that the color of both the spatial and temporal variability influences the rate of dispersal selected as reddening of the temporal noise leads to a reduction in dispersal, while reddening of spatial variability results in an increase in the dispersal rate. These results demonstrate that the color of environmental noise should be considered in future studies looking at the evolution of life history characteristics.  相似文献   

8.
Interspecific competition, life history traits, environmental heterogeneity and spatial structure as well as disturbance are known to impact the successful dispersal strategies in metacommunities. However, studies on the direction of impact of those factors on dispersal have yielded contradictory results and often considered only few competing dispersal strategies at the same time. We used a unifying modeling approach to contrast the combined effects of species traits (adult survival, specialization), environmental heterogeneity and structure (spatial autocorrelation, habitat availability) and disturbance on the selected, maintained and coexisting dispersal strategies in heterogeneous metacommunities. Using a negative exponential dispersal kernel, we allowed for variation of both species dispersal distance and dispersal rate. We showed that strong disturbance promotes species with high dispersal abilities, while low local adult survival and habitat availability select against them. Spatial autocorrelation favors species with higher dispersal ability when adult survival and disturbance rate are low, and selects against them in the opposite situation. Interestingly, several dispersal strategies coexist when disturbance and adult survival act in opposition, as for example when strong disturbance regime favors species with high dispersal abilities while low adult survival selects species with low dispersal. Our results unify apparently contradictory previous results and demonstrate that spatial structure, disturbance and adult survival determine the success and diversity of coexisting dispersal strategies in competing metacommunities.  相似文献   

9.
The joint spatial and temporal fluctuations in community structure may be due to dispersal, variation in environmental conditions, ecological heterogeneity among species and demographic stochasticity. These factors are not mutually exclusive, and their relative contribution towards shaping species abundance distributions and in causing species fluctuations have been hard to disentangle. To better understand community dynamics when the exchange of individuals between localities is very low, we studied the dynamics of the freshwater zooplankton communities in 17 lakes located in independent catchment areas, sampled at end of summer from 2002 to 2008 in Norway. We analysed the joint spatial and temporal fluctuations in the community structure by fitting the two‐dimensional Poisson lognormal model under a two‐stage sampling scheme. We partitioned the variance of the distribution of log abundance for a random species at a random time and location into components of demographic stochasticity, ecological heterogeneity among species, and independent environmental noise components for the different species. Non‐neutral mechanisms such as ecological heterogeneity among species (20%) and spatiotemporal variation in the environment (75%) explained the majority of the variance in log abundances. Overdispersion relative to Poisson sampling and demographic stochasticity had a small contribution to the variance (5%). Among a set of environmental variables, lake acidity was the environmental variable that was most strongly related to decay of community similarity in space and time.  相似文献   

10.
Dispersal theory generally predicts kin competition, inbreeding, and temporal variation in habitat quality should select for dispersal, whereas spatial variation in habitat quality should select against dispersal. The effect of predation on the evolution of dispersal is currently not well-known: because predation can be variable in both space and time, it is not clear whether or when predation will promote dispersal within prey. Moreover, the evolution of prey dispersal affects strongly the encounter rate of predator and prey individuals, which greatly determines the ecological dynamics, and in turn changes the selection pressures for prey dispersal, in an eco-evolutionary feedback loop. When taken all together the effect of predation on prey dispersal is rather difficult to predict. We analyze a spatially explicit, individual-based predator-prey model and its mathematical approximation to investigate the evolution of prey dispersal. Competition and predation depend on local, rather than landscape-scale densities, and the spatial pattern of predation corresponds well to that of predators using restricted home ranges (e.g. central-place foragers). Analyses show the balance between the level of competition and predation pressure an individual is expected to experience determines whether prey should disperse or stay close to their parents and siblings, and more predation selects for less prey dispersal. Predators with smaller home ranges also select for less prey dispersal; more prey dispersal is favoured if predators have large home ranges, are very mobile, and/or are evenly distributed across the landscape.  相似文献   

11.
Natural host‐parasite interactions exhibit considerable variation in host quality, with profound consequences for disease ecology and evolution. For instance, treatments (such as vaccination) may select for more transmissible or virulent strains. Previous theory has addressed the ecological and evolutionary impact of host heterogeneity under the assumption that hosts and parasites disperse globally. Here, we investigate the joint effects of host heterogeneity and local dispersal on the evolution of parasite life‐history traits. We first formalise a general theoretical framework combining variation in host quality and spatial structure. We then apply this model to the specific problem of parasite evolution following vaccination. We show that, depending on the type of vaccine, spatial structure may select for higher or lower virulence compared to the predictions of non‐spatial theory. We discuss the implications of our results for disease management, and their broader fundamental relevance for other causes of host heterogeneity in nature.  相似文献   

12.
Although theory established the necessary conditions for diversification in temporally heterogeneous environments, empirical evidence remains controversial. One possible explanation is the difficulty of designing experiments including the relevant range of temporal grains and the appropriate environmental trade-offs. Here, we experimentally explore the impact of the grain on the diversification of the bacterium Pseudomonas fluorescens SBW25 in a temporally fluctuating environment by including 20 different pairs of environments and four temporal grains. In general, higher levels of diversity were observed at intermediate temporal grains. This resulted in part from the enhanced capacity of disruptive selection to generate negative genotypic correlations in performance at intermediate grains. However, the evolution of reciprocal specialization was an uncommon outcome. Although the temporal heterogeneity is in theory less powerful than the spatial heterogeneity to generate and maintain the diversity, our results show that diversification under temporal heterogeneity is possible provided appropriate environmental grains.  相似文献   

13.
Spatial self-organization is a hallmark of surface-associated microbial communities that is governed by local environmental conditions and further modified by interspecific interactions. Here, we hypothesize that spatial patterns of microbial cell-types can stabilize the composition of cross-feeding microbial communities under fluctuating environmental conditions. We tested this hypothesis by studying the growth and spatial self-organization of microbial co-cultures consisting of two metabolically interacting strains of the bacterium Pseudomonas stutzeri. We inoculated the co-cultures onto agar surfaces and allowed them to expand (i.e. range expansion) while fluctuating environmental conditions that alter the dependency between the two strains. We alternated between anoxic conditions that induce a mutualistic interaction and oxic conditions that induce a competitive interaction. We observed co-occurrence of both strains in rare and highly localized clusters (referred to as “spatial jackpot events”) that persist during environmental fluctuations. To resolve the underlying mechanisms for the emergence of spatial jackpot events, we used a mechanistic agent-based mathematical model that resolves growth and dispersal at the scale relevant to individual cells. While co-culture composition varied with the strength of the mutualistic interaction and across environmental fluctuations, the model provides insights into the formation of spatially resolved substrate landscapes with localized niches that support the co-occurrence of the two strains and secure co-culture function. This study highlights that in addition to spatial patterns that emerge in response to environmental fluctuations, localized spatial jackpot events ensure persistence of strains across dynamic conditions.Subject terms: Microbial ecology, Biofilms  相似文献   

14.
We consider a two-species competition model in which the species have the same population dynamics but different dispersal strategies. Both species disperse by a combination of random diffusion and advection along environmental gradients, with the same random dispersal rates but different advection coefficients. Regarding these advection coefficients as movement strategies of the species, we investigate their course of evolution. By applying invasion analysis we find that if the spatial environmental variation is less than a critical value, there is a unique evolutionarily singular strategy, which is also evolutionarily stable. If the spatial environmental variation exceeds the critical value, there can be three or more evolutionarily singular strategies, one of which is not evolutionarily stable. Our results suggest that the evolution of conditional dispersal of organisms depends upon the spatial heterogeneity of the environment in a subtle way.  相似文献   

15.
Derek A. Roff 《Oecologia》1978,36(2):163-172
Summary Spatial and temporal variability in environmental conditions can significantly influence fluctuations in body size if the environmental heterogeneity gives rise to variable size dependent mortality rates, or dispersal between sites incurs a reproductive cost. Temporal variability has a greater effect than spatial variability. These conclusions are derived from a model based on the assumption that the innate capacity for increase, r m , is a suitable fitness measure. The limitations of this model are discussed and an alternative approach using the parent-offspring regression presented. It is suggested that models based upon the latter approach are more appropriate for investigations of the evolution of traits (showing continuous variation) in variable environments because it does not require the assumption that some fitness measure is being optimized and because it may give more insight into the rates of change of the character.  相似文献   

16.
Ecological systems are always subjected to various environmental fluctuations. They evolve under these fluctuations and the resulting systems are robust against them. The diversity in ecological systems is also acquired through the evolution. How do the fluctuations affect the evolutionary processes? Do the fluctuations have direct impact on the species diversity in ecological systems? In the present paper, we investigate the relation between the environmental fluctuation and the evolution of species diversity with a mathematical model of evolutionary ecology. In the model, individual organisms compete for a single restricted resource and the temporal fluctuation in the resource supply is introduced as the environmental fluctuation. The evolutionary process is represented by the mutational change of genotypes which determines their resource utilization strategies. We found that when the environmental state is switched form static to fluctuating conditions, the initial closely related population distributed around the genotype adapted for the static environment is destabilized and divided into two groups in the genotype space; i.e., the evolutionary branching is induced by the environmental fluctuation. The consequent multiple species structures is evolutionary stable at the presence of the fluctuation. We perform the evolutionary invasion analysis for the phenomena and illustrate the mechanisms of the branchings. The results indicate a novel process of increasing the species diversity via evolutionary branching, and the analysis reveals the mechanisims of the branching preocess as the response to the environmental fluctuation. The robustness of the evolutionary process is also discussed.  相似文献   

17.
Adaptation to temporal variation in environmental conditions is widespread. Whether evolution in a constant environment alters adaptation to temporal variation is relatively unexplored. We examine how constant and diurnally fluctuating temperature conditions affect life-history traits in two populations of the tobacco hornworm, Manduca sexta : a field population that routinely experiences fluctuating temperatures; and a laboratory population (derived from this field population in the 1960s) maintained at a constant temperature for more than 250 generations. Our experiments demonstrate that diurnal fluctuations significantly alter body size and development time in both populations, and confirm that these populations differ in their responses to a mean temperature. However, we found no evidence for population divergence in responses to diurnal temperature fluctuations. We suggest that mean and extreme temperatures may act as more potent selective forces on thermal reaction norms than temperature variation per se.  相似文献   

18.
Besides spatial heterogeneity, another important component of the diversity of protist communities is the variation in species assemblages through time. Despite its importance, temporal turnover of benthic communities has been studied to a lesser extent than spatial heterogeneity has. In this study, we examine the desmid assemblages on small spatial scale in relation to the spatial, temporal, and environmental parameters. The samples were collected within two different types of peatland localities in the Czech Republic over 3 years. The differences in species composition between samples were mainly correlated with the geographic distance, while the effects of the environmental and temporal variables were much weaker. Since the spatial heterogeneity of the assemblages was not induced by the variation of the environmental factors or by the restricted dispersal ability at such a small spatial scale, we assume that both the temporal stability and strong spatial autocorrelation might have been the result of a priority effect, with subsequent monopolization of resources. Stochasticity in colonization can introduce noise into the match between community composition and environmental conditions, which may result in stronger effect of the spatial parameters on the community structure.  相似文献   

19.
Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process.  相似文献   

20.
Theory posits that community dynamics organize at distinct hierarchical scales of space and time, and that the spatial and temporal patterns at each scale are commensurate. Here we use time series modeling to investigate fluctuation frequencies of species groups within invertebrate metacommunities in 26 boreal lakes over a 20-year period, and variance partitioning analysis to study whether species groups with different fluctuation patterns show spatial signals that are commensurate with the scale-specific fluctuation patterns identified. We identified two groups of invertebrates representing hierarchically organized temporal dynamics: one species group showed temporal variability at decadal scales (slow patterns of change), whilst another group showed fluctuations at 3 to 5-year intervals (faster change). This pattern was consistently found across all lakes studied. A spatial signal was evident in the slow but not faster-changing species groups. As expected, the spatial signal for the slow-changing group coincided with broad-scale spatial patterns that could be explained with historical biogeography (ecoregion delineation, and dispersal limitation assessed through a dispersal trait analysis). In addition to spatial factors, the slow-changing groups correlated with environmental variables, supporting the conjecture that boreal lakes are undergoing environmental change. Taken together our results suggest that regionally distinct sets of taxa, separated by biogeographical boundaries, responded similarly to broad-scale environmental change. Not only does our approach allow testing theory about hierarchically structured space-time patterns; more generally, it allows assessing the relative role of the ability of communities to track environmental change and dispersal constraints limiting community structure and biodiversity at macroecological scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号