首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A cane molasses-based medium for the biomass production of biocontrol agent Rhodosporidium paludigenum was statistically optimized. Molasses concentration (after pretreatment), yeast extract, and initial pH were identified by the Plackett-Burman design to show significant influence on the biomass production. The three factors were further optimized by central composite design and response-surface methodology. The statistical analysis indicated the optimum values of the variables were 89.98?g/L for cane molasses, 2.35?g/L for yeast extract and an initial pH of 8.48. The biomass yield at the optimal culture achieved 15.89?g/L in flask fermentation, which was 2.1 times higher than that at the initial NYDB medium. In a 10-L fermenter, 18.97?g/L of biomass was obtained after 36?hr of cultivation. Moreover, the biocontrol efficacy of the yeast was investigated after culture optimization. The results showed the yeast harvested in the optimal medium maintained its initial biocontrol properties by reducing the percentage of decayed apples to below 20%.  相似文献   

4.
An extracellular glucoamylase [exo-1,4-α-d-glucosidase, 1,4-α-d-glucan glucohydrolase, EC 3.2.1.3] of Endomycopsis fibuligera has been purified and some of its properties studied. It had a very high debranching activity (0.63). The enzyme was completely adsorbed onto raw starch at all the pH values tested (pH 2.0–7.6). Amylase inhibitor from Streptomyces sp. did not prevent the adsorption of glucoamylase onto raw starch although the enzyme did not digest raw starch in the presence of amylase inhibitor. Sodium borate (0.1 m) eluted only 35% of the adsorbed enzyme from raw starch. The optimum pH for raw starch digestion was 4.5 whereas that of boiled soluble starch hydrolysis was 5.5. Waxy starches were more easily digested than non-waxy starches, and root starches were slowly digested by this enzyme.  相似文献   

5.
The effectiveness of yeast extracts (YE) and potato extracts (PE) to promote growth of seven lactic cultures was evaluated by automated spectrophotometry (AS). Two aspects of the growth curve were analysed: (1) maximum biomass obtained (using ODmax) and (2) highest specific growth rate mu(max)) Eleven lots from the same PE-manufacturing process were examined for lot-to-lot variability. The ODmax values of three of the seven strains were significantly affected by lot source, but mu(max) was not significantly affected. The growth of bacteria was systematically lower in base medium containing 100% PE than in base medium containing 100% YE for both ODmax or mu(max) data, which could be related to the lower content in nitrogen-based compounds in PE. In AS assays, highest OD values for Lactobacillus casei EQ28, Lactobacillus rhamnosus R-011, Lactobacillus plantarum EQ12, and Streptococcus thermophilus R-083 were obtained with a mixture of PE and YE. Fermentations (2 L) were also carried out to determine the accuracy of AS to predict biomass levels obtained under fermentation trials. In these fermentations, replacement of 50% YE with PE was shown to enable good growth of S. thermophilus. With L. rhamnosus R-011, a high correlation (R2 = 0.95) was found between ODmax data obtained in the AS assays and that of the 2-L bioreactor when the same growth medium was used for both series of fermentations. However, AS was not as efficient when industrial media were used for the bioreactor assays. The relationship was still good for ODmax between AS data and that of the bioreactor data with L. rhamnosus R-011 in industrial LBS medium (R2 = 0.87), but was very poor with the S. thermophilus R-083 on Rosell #43 industrial medium (R2 = 0.33). Since PE cost 40% less than YE, there are strong economic advantages in considering such a partial replacement of YE by PE.  相似文献   

6.
Growth of the yeast-like fungus Endomycopsis fibuliger 55-13 during continous cultivation was studied. The microorganism produced amylolytic enzymes during flow cultivation. As a result of the three-stage cultivation the productivity increased two-fold and the time of cultivation decreased by 6 hrs as compared with periodic cultivation.  相似文献   

7.
Summary The cultivation, growth patterns, and physiological activities of the marine cyanobacterium (blue-green alga)Spirulina subsalsa were studied. A comparison of its growth in three different media (diluted seawater, seawater, and seawater +0.5M NaCl) revealed a faster growth in the hypersaline medium. In the hypersaline medium, the culture was homogeneous, in contrast to the aggretates formed in the lower-salt media. Enzymic analysis of the cells demonstrated selective sensitivity of soluble malate dehydrogenase to sodium ions, while chloride ions or nonionic solutes caused no inhibition. The membrane-associated enzyme ferredoxin-NADP reductase was only partially sensitive to sodium ions. The respiratory enzymes exhibited well-coupled activity, and faster respiration was observed with the preparation from the hypersaline culture.  相似文献   

8.
The conversion of starch from unhydrolyzed cassava flour to ethanol by a pure culture of Endomycopsis fibuligera and by a co-culture of this amylolytic yeast and the bacterium Zymomonas mobilis was studied. The best overall results were obtained using the mixed culture. After 96 h of fermentation of a medium containing 150 g/l initial cassava starch, an ethanol concentration of 31.4 g/l, a productivity of 0.33 g ethanol/l × h and a yield of 0.21 g ethanol/g initial starch were reached. The highest yield (0.37 g/g) was obtained after 48 h when using a medium containing 50 g/l initial starch.  相似文献   

9.
10.
Summary Fermentation of starch based industrial media was tested with yeast fusion products previously described, from a Baker's yeastSaccharomyces cerevisiae and Saccharomyces diastaticus and from a highly flocculentSaccharomyces cerevisiae andSaccharomyces diastaticus. The (somatic) fusion products were capable to produce more ethanol than parental strains after 96 h of batch fermentation. The aim of this work was to reduce the amount of enzyme used in saccharification by using good fermenting amylolytic yeast strains.  相似文献   

11.
Saccharomycopsis fibuliger cells produce an inducible hydrolase, tentatively characterized as a polygalacturonase [poly(1,4-α-d-galacturonide) glycanohydrolase, EC 3.2.1.15], which is associated with the yeast cells and which causes the partial hydrolysis of pectin or poly-d-galacturonic acid. No evidence of pectinesterase (pectin pectyl hydrolyase, EC 3.1.1.11) or pectate lyase [poly(1,4-α-d-galacturonide) lyase, EC 4.1.1.1] activity has been found. Enzyme production took place at an optimum temperature of 28°C, whereas optimum activity was at ~45°C. The optimum pH for pectolytic activity was similar to the optimum pH for cell growth. A reduction in the concentration of dissolved oxygen in the culture medium and an increase in cell age caused an increase in the rate of pectin decomposition within the limits employed. Products of pectin decomposition consisted of a mixture of uronides including d-galacturonic acid.  相似文献   

12.
Saccharomyces cerevisiae was grown under aerobic and substrate-limiting conditions for efficient biomass production. Under these conditions, where the sugar substrate was fed incrementally, the growth pattern of the yeast cells was found to be uniform, as indicated by a constant respiratory quotient during the entire growing period. The effect of carbon dioxide was investigated by replacing portions of the nitrogen in the air stream with carbon dioxide, while maintaining the oxygen content at the normal 20% level, so that identical oxygen transfer rate and atmospheric pressure were maintained for all experiments with different partial pressures of carbon dioxide. Inhibition of yeast growth was negligible below 20% CO2 in the aeration mixture. Slight inhibition was noted at the 40% CO2 level and significant inhibition was noted above the 50% CO2, level, corresponding to 1.6 × 10?2M of dissolved CO2 in the fermentor broth. High carbon dioxide content in the gas phase also inhibited the fermentation activity of baker's yeast.  相似文献   

13.
Recombinant Saccharomyces cerevisiae YKU 131 (capable of expressing glucoamylase) was used to produce ethanol from sago starch. The optimum C/N ratio for ethanol production by the recombinant yeast was 7.9, where 4.7 and 10.1 g/l ethanol was produced from 20 and 40 g/l sago starch, respectively. At sago starch concentration higher than 40 g/l and C/N ratio higher than 10.4, glucoamylase production and rate of starch hydrolysis were reduced, which in turn, reduced ethanol production significantly. The theoretical yield of ethanol based on sago starch consumed in fermentation using 40 g/l was 72.6%. This yield was slightly lower than those obtained in fermentation using soluble starch such as potato and corn starch, which ranged from 80–90% as reported in the literature. However, S. cerevisiae YKU 131 could only utilize 62% of the total amount of starch added to a medium.  相似文献   

14.
Summary A survey was made of 81 starch-assimilating yeasts, representing 59 species and varieties, with respect to their capacity for the direct conversion of starch into SCP. The extent of starch conversion by the native amylases of the strains during exponential growth, expressed as yield on starch (final amount of dry biomass formed per unit mass of starch originally supplied), varied over a wide range (0.043–0.590) The highest yields were obtained with strains ofLipomyces starkeyi andL. kononenkoae which converted on the average respectively 84% and nearly 100% of the starch supplied. The rate of starch hydrolysis byL. kononenkoae did not limit its specific rate of growth and SCP production.  相似文献   

15.
Summary Yeast isolates were obtained from different stages in the sugar refining process in an attempt to isolate thermotolerant strains which would grow on a molasses urea medium. Several strains which gave biomass yields of 30–41% at 40° were isolated and identified. Four of these strains were shown to be more resistant to a 15 minute incubation at 55° than three mesophilic strains.  相似文献   

16.
Fully aerated cultures of Schwanniomyces alluvius grew on 4% soluble potato starch in a defined minimal medium at a doubling time of 1.5 h at 30°C. A recovery of 51% (0.51 g of dried biomass from 1 g of starch) was obtained. Yields and growth rates of cultures on starch were similar to those on glucose.  相似文献   

17.
Summary Production of lipid from starch in a two-component mixed culture in a fed batch process was studied. Saccharomycopsis fibuliger was used as the amylolytic microorganism and Rhodosporidium toruloides, which does not grow on starch, as the lipid producer. The concentration of nitrogen can be used as an external regulator of growth and competition in this process. The total biomass concentration decreased and the relative amount of Rh. toruloides increased with decreasing initial concentration of nitrogen in the medium. The highest lipid concentration (9.7 g·l-1), highest overall lipid production rate (0.15 g·l-1·h-1) and highest concentration of lipid in biomass (36.5%) were obtained in cultures with an initial nitrogen concentration of 0.5 g·l-1. Compared to monocultures of Lipomyces starkeyi and Aspergillus oryzae on starch, the mixed culture showed slightly lower conversion of starch to lipid but was superior in the final lipid concentration and the overall lipid production rate.  相似文献   

18.
Qin  Lei  Liu  Lu  Wang  Zhongming  Chen  Weining  Wei  Dong 《Bioprocess and biosystems engineering》2019,42(9):1409-1419

Microbial biomass which mostly generated from the microbial processes of bacteria, yeasts, and microalgae is an important resource. Recent concerns in microbial biomass production field, especially microbial lipid production for biofuel, have been focused towards the mixed culture of microalgae and yeast. To more comprehensive understanding of the mixed culture for microbial biomass, mono Chlorella pyrenoidosa, mono Yarrowia lipolytica and the mixed culture were investigated in the present work. Results showed that the mixed culture achieved significantly faster cell propagation of microalga and yeast, smaller individual cell size of yeast and higher relative chlorophyll content of microalga. The mixed culture facilitated the assimilation of carbon and nitrogen and drove the carbon flow to carbohydrate. Besides higher lipid yield (0.77 g/L), higher yields of carbohydrates (1.82 g/L), protein (1.99 g/L) and heating value (114.64 kJ/L) indicated the microbial biomass harvested from the mixed culture have more potential utilization in renewable energy, feedstuff, and chemical industry.

  相似文献   

19.
20.
《Process Biochemistry》2010,45(8):1362-1367
The effect of magnetic fields (MF) on glutathione (GSH) production by Saccharomyces cerevisiae ATCC 7754 was studied. For this purpose, a factorial design of experiments was used to determine the influence of the time of exposure (8–16 h) and MF induction (25.0–34.3 mT), in GSH and biomass production. Additionally, control experiments (CE), without the application of MF, were performed. The results indicated the existence of favourable alterations in GSH and biomass concentrations due to the application of MF. In all experiments, the amount of biomass produced was higher than in CE and, with regard to GSH yield, in all the experiments at 24 and 48 h it was higher and in three experiments at 72 h of culture. The highest specific GSH yield (20.9 mgGSH/gbiomass), GSH yield (340.0 mg/L) and biomass (16.26 g/L) were obtained using a MF induction of 25.0 mT for 16 h. These results were 16.1%, 39.0% and 19.6% higher than in the CE, respectively. Through statistical analysis it was found that the MF induction was a significant factor in GSH yield, and also it was observed that, within the range of the experimental conditions used, the lower MF induction, the higher the GSH yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号