首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Eeva-Liisa Karjalainen  Andreas Barth 《BBA》2007,1767(11):1310-1318
The sarcoplasmic reticulum Ca2+-ATPase (SERCA1a) pumps Ca2+ and countertransport protons. Proton pathways in the Ca2+ bound and Ca2+-free states are suggested based on an analysis of crystal structures to which water molecules were added. The pathways are indicated by chains of water molecules that interact favorably with the protein. In the Ca2+ bound state Ca2E1, one of the proposed Ca2+ entry paths is suggested to operate additionally or alternatively as proton pathway. In analogs of the ADP-insensitive phosphoenzyme E2P and in the Ca2+-free state E2, the proton path leads between transmembrane helices M5 to M8 from the lumenal side of the protein to the Ca2+ binding residues Glu-771, Asp-800 and Glu-908. The proton path is different from suggested Ca2+ dissociation pathways. We suggest that separate proton and Ca2+ pathways enable rapid (partial) neutralization of the empty cation binding sites. For this reason, transient protonation of empty cation binding sites and separate pathways for different ions are advantageous for P-type ATPases in general.  相似文献   

2.
During Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure. The Ca(2+) affinity of this E1P is as high as that of the unphosphorylated ATPase (E1), indicating the Ca(2+) binding sites are not disrupted. Thus, bound K(+) stabilizes the E1PCa(2) structure with occluded Ca(2+), keeping the Ca(2+) pathway to the lumen closed. We found previously (Yamasaki, K., Wang, G., Daiho, T., Danko, S., and Suzuki, H. (2008) J. Biol. Chem. 283, 29144-29155) that the K(+) bound in E2P reduces the Ca(2+) affinity essential for achieving the high physiological Ca(2+) gradient and to fully open the lumenal Ca(2+) gate for rapid Ca(2+) release (E2PCa(2) → E2P + 2Ca(2+)). These findings show that bound K(+) is critical for stabilizing both E1PCa(2) and E2P structures, thereby contributing to the structural changes that efficiently couple phosphoenzyme processing and Ca(2+) handling.  相似文献   

3.
Synaptotagmin I has two tandem Ca(2+)-binding C(2) domains, which are essential for fast synchronous synaptic transmission in the central nervous system. We have solved four crystal structures of the C(2)B domain, one of them in the cation-free form at 1.50 A resolution, two in the Ca(2+)-bound form at 1.04 A (two bound Ca(2+) ions) and 1.65 A (three bound Ca(2+) ions) resolution and one in the Sr(2+)-bound form at 1.18 A (one bound Sr(2+) ion) resolution. The side chains of four highly conserved aspartic acids (D303, D309, D363, and D365) and two main chain oxygens (M302:O and Y364:O), together with water molecules, are in direct contact with two bound Ca(2+) ions (sites 1 and 2). At higher Ca(2+) concentrations, the side chain of N333 rotates and cooperates with D309 to generate a third Ca(2+) coordination site (site 3). Divalent cation binding sites 1 and 2 in the C(2)B domain were previously identified from NMR NOE patterns and titration studies, supplemented by site-directed mutation analysis. One difference between the crystal and NMR studies involves D371, which is not involved in coordination with any of the identified Ca(2+) sites in the crystal structures, while it is coordinated to Ca(2+) in site 2 in the NMR structure. In the presence of Sr(2+), which is also capable of triggering exocytosis, but with lower efficiency, only one cation binding site (site 1) was occupied in the crystallographic structure.  相似文献   

4.
Black DJ  Persechini A 《Biochemistry》2011,50(46):10061-10068
We have investigated the roles played by the calmodulin (CaM) N- and C-lobes in establishing the conformations of CaM-IQ domain complexes in different Ca(2+)-free and Ca(2+)-bound states. Our results indicate a dominant role for the C-lobe in these complexes. When the C-lobe is Ca(2+)-free, it directs the N-lobe to a binding site within the IQ domain consensus sequence. It appears that the N-lobe must be Ca(2+)-free to interact productively with this site. When the C-lobe is Ca(2+)-bound, it directs the N-lobe to a site upstream of the consensus sequence, and it appears that the N-lobe must be Ca(2+)-bound to interact productively with this site. A model for switching in CaM-IQ domain complexes is presented in which the N-lobe adopts bound and extended positions that depend on the status of the Ca(2+)-binding sites in each CaM lobe and the compositions of the two N-lobe binding sites. Ca(2+)-dependent changes in the conformation of the bound C-lobe that appear to be responsible for directed N-lobe binding are also identified. Changes in the equilibria between extended and bound N-lobe positions may control bridging interactions in which the extended N-lobe is bound to another CaM-binding domain. Ca(2+)-dependent control of bridging interactions with CaM has been implicated in the regulation of ion channel and unconventional myosin activities.  相似文献   

5.
Henzl MT  Agah S  Larson JD 《Biochemistry》2003,42(12):3594-3607
We have examined the metal ion-binding domains from rat alpha and beta parvalbumin. We find that the CD-EF fragments differ markedly in their tendency to self-associate. Whereas Ca(2+)-free alpha CD-EF is monomeric, the Ca(2+)-free beta peptide dimerizes weakly (K(2) = 2400 +/- 200 M(-1)). In buffer containing 1.0 mM Ca(2+), the apparent dimerization constant for beta CD-EF (191,000 +/- 29,000 M(-1)) is more than 50 times that of alpha (3400 +/- 200 M(-1)). Alpha CD-EF binds two Ca(2+) with positive cooperativity. Titration calorimetry data afford binding constants of 3.7(0.1) x 10(3) M(-1) and 8.6(0.2) x 10(4) M(-1). Beta CD-EF also binds two Ca(2+) cooperatively but with lower affinity. Equilibrium dialysis yields Adair constants of 4.2(0.1) x 10(3) and 6.1(0.2) x 10(3) M(-1). Significantly, the difference in Ca(2+) affinity is substantially smaller than that observed for the full-length proteins-suggesting that the AB domain can modulate divalent ion affinity. Analysis of beta calorimetry data requires explicit consideration of the self-association behavior. Data collected at low CD-EF concentration are consistent with preferential occupation of the EF site, dimerization of singly bound monomers, and cooperative filling of the CD sites. At higher concentrations, apo-protein dimerization can apparently precede cooperative occupation of the EF sites. In the presence of Ca(2+), alpha CD-EF exhibits higher thermal stability, consistent with its higher Ca(2+) affinity. However, the beta melting temperature shows greater concentration dependence, consistent with its greater tendency to dimerize. Neither fragment exhibits a sigmoidal melting curve in the Ca(2+)-free state, suggesting that the apo-peptides are disordered.  相似文献   

6.
Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) transports two Ca(2+) ions across the membrane of the sarco(endo)plasmic reticulum against the concentration gradient, harvesting the required energy by hydrolyzing one ATP molecule during each transport cycle. Although SERCA is one of the best structurally characterized membrane transporters, it is still largely unknown how the transported Ca(2+) ions reach their transmembrane binding sites in SERCA from the cytoplasmic side. Here, we performed extended all-atom molecular dynamics simulations of SERCA. The calculated electrostatic potential of the protein reveals a putative mechanism by which cations may be attracted to and bind to the Ca(2+)-free state of the transporter. Additional molecular dynamics simulations performed on a Ca(2+)-bound state of SERCA reveal a water-filled pathway that may be used by the Ca(2+) ions to reach their buried binding sites from the cytoplasm. Finally, several residues that are involved in attracting and guiding the cations toward the possible entry channel are identified. The results point to a single Ca(2+) entry site close to the kinked part of the first transmembrane helix, in a region loaded with negatively charged residues. From this point, a water pathway outlines a putative Ca(2+) translocation pathway toward the transmembrane ion-binding sites.  相似文献   

7.
Our model of phospholamban (PLB) regulation of the cardiac Ca(2+)-ATPase in sarcoplasmic reticulum (SERCA2a) states that PLB binds to the Ca(2+)-free, E2 conformation of SERCA2a and blocks it from transitioning from E2 to E1, the Ca(2+)-bound state. PLB and Ca(2+) binding to SERCA2a are mutually exclusive, and PLB inhibition of SERCA2a is manifested as a decreased apparent affinity of SERCA2a for Ca(2+). Here we extend this model to explain the reversal of SERCA2a inhibition that occurs after phosphorylation of PLB at Ser(16) by protein kinase A (PKA) and after binding of the anti-PLB monoclonal antibody 2D12, which recognizes residues 7-13 of PLB. Site-specific cysteine variants of PLB were co-expressed with SERCA2a, and the effects of PKA phosphorylation and 2D12 on Ca(2+)-ATPase activity and cross-linking to SERCA2a were monitored. In Ca(2+)-ATPase assays, PKA phosphorylation and 2D12 partially and completely reversed SERCA2a inhibition by decreasing K(Ca) values for enzyme activation, respectively. In cross-linking assays, cross-linking of PKA-phosphorylated PLB to SERCA2a was inhibited at only two of eight sites when conducted in the absence of Ca(2+) favoring E2. However, at a subsaturating Ca(2+) concentration supporting some E1, cross-linking of phosphorylated PLB to SERCA2a was attenuated at all eight sites. K(Ca) values for cross-linking inhibition were decreased nearly 2-fold at all sites by PLB phosphorylation, demonstrating that phosphorylated PLB binds more weakly to SERCA2a than dephosphorylated PLB. In parallel assays, 2D12 blocked PLB cross-linking to SERCA2a at all eight sites regardless of Ca(2+) concentration. Our results demonstrate that 2D12 restores maximal Ca(2+)-ATPase activity by physically disrupting the binding interaction between PLB and SERCA2a. Phosphorylation of PLB by PKA weakens the binding interaction between PLB and SERCA2a (yielding more PLB-free SERCA2a molecules at intermediate Ca(2+) concentrations), only partially restoring Ca(2+) affinity and Ca(2+)-ATPase activity.  相似文献   

8.
It is known that extracellular Mg(2+) and Ca(2+) can permeate TRPM7 and at the same time block the permeation by monovalent cations. In the present study, we examined the molecular basis for the conductivity and sensitivity of human TRPM7 to these divalent cations. Extracellular acidification to pH 4.0 markedly reduced the blocking effects of Mg(2+) and Ca(2+) on the Cs(+) currents, decreasing their binding affinities: their IC(50) values increased 510- and 447-fold, respectively. We examined the effects of neutralizing each of four negatively charged amino acid residues, Glu-1047, Glu-1052, Asp-1054 and Asp-1059, within the putative pore-forming region of human TRPM7. Mutating Glu-1047 to alanine (E1047A) resulted in non-functional channels, whereas mutating any of the other residues resulted in functionally expressed channels. Cs(+) currents through D1054A and E1052A were less sensitive to block by divalent cations; the IC(50) values were increased 5.5- and 3.9-fold, respectively, for Mg(2+) and 10.5- and 6.7-fold, respectively, for Ca(2+). D1059A also had a significant reduction, though less marked compared to the reductions seen for D1054A and E1052A, in sensitivity to Mg(2+) (1.7-fold) and Ca(2+) (3.9-fold). The D1054A mutation largely abolished inward currents conveyed by Mg(2+) and Ca(2+). In the E1052A and D1059A mutants, inward Mg(2+) and Ca(2+) currents were sizable but significantly diminished. Thus, it is concluded that in human TRPM7, (1) both Asp-1054 and Glu-1052, which are located near the narrowest portion in the pore's selectivity filter, may provide the binding sites for Mg(2+) and Ca(2+), (2) Asp-1054 is an essential determinant of Mg(2+)and Ca(2+) conductivity, and (3) Glu-1052 and Asp-1059 facilitate the conduction of divalent cations.  相似文献   

9.
Hauser K  Barth A 《Biophysical journal》2007,93(9):3259-3270
Protonation of acidic residues in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA 1a) was studied by multiconformation continuum electrostatic calculations in the Ca(2+)-bound state Ca(2)E1, in the Ca(2+)-free state E2(TG) with bound thapsigargin, and in the E2P (ADP-insensitive phosphoenzyme) analog state with MgF(4)(2-) E2(TG+MgF(4)(2-)). Around physiological pH, all acidic Ca(2+) ligands (Glu(309), Glu(771), Asp(800), and Glu(908)) were unprotonated in Ca(2)E1; in E2(TG) and E2(TG+MgF(4)(2-)) Glu(771), Asp(800), and Glu(908) were protonated. Glu(771) and Glu(908) had calculated pK(a) values larger than 14 in E2(TG) and E2(TG+MgF(4)(2-)), whereas Asp(800) titrated with calculated pK(a) values near 7.5. Glu(309) had very different pK(a) values in the Ca(2+)-free states: 8.4 in E2(TG+MgF(4)(2-)) and 4.7 in E2(TG) because of a different local backbone conformation. This indicates that Glu(309) can switch between a high and a low pK(a) mode, depending on the local backbone conformation. Protonated Glu(309) occupied predominantly two main, very differently orientated side-chain conformations in E2(TG+MgF(4)(2-)): one oriented inward toward the other Ca(2+) ligands and one oriented outward toward a protein channel that seems to be in contact with the cytoplasm. Upon deprotonation, Glu(309) adopted completely the outwardly orientated side-chain conformation. The contact of Glu(309) with the cytoplasm in E2(TG+MgF(4)(2-)) makes this residue unlikely to bind lumenal protons. Instead it might serve as a proton shuttle between Ca(2+)-binding site I and the cytoplasm. Glu(771), Asp(800), and Glu(908) are proposed to take part in proton countertransport.  相似文献   

10.
The mechanism of ATP modulation of E2P dephosphorylation of sarcoplasmic reticulum Ca(2+)-ATPase wild type and mutant forms was examined in nucleotide binding studies of states analogous to the various intermediates of the dephosphorylation reaction, obtained by binding of metal fluorides, vanadate, or thapsigargin. Wild type Ca(2+)-ATPase displays an ATP affinity of 4 μM for the E2P ground state analog, 1 μM for the E2P transition state and product state analogs, and 11 μM for the E2 dephosphoenzyme. Hence, ATP binding stabilizes the transition and product states relative to the ground state, thereby explaining the accelerating effect of ATP on dephosphorylation. Replacement of Phe(487) (N-domain) with serine, Arg(560) (N-domain) with leucine, or Arg(174) (A-domain) with alanine or glutamate reduces ATP affinity in all E2/E2P intermediate states. Alanine substitution of Ile(188) (A-domain) increases the ATP affinity, although ATP acceleration of dephosphorylation is disrupted, thus indicating that the critical role of Ile(188) in ATP modulation is mechanistically based rather than being associated with the binding of nucleotide. Mutants with alanine replacement of Lys(205) (A-domain) or Glu(439) (N-domain) exhibit an anomalous inhibition by ATP of E2P dephosphorylation, due to ATP binding increasing the stability of the E2P ground state relative to the transition state. The ATP affinity of Ca(2)E2P, stabilized by inserting four glycines in the A-M1 linker, is similar to that of the E2P ground state, but the Ca(2+)-free E1 state of this mutant exhibits 3 orders of magnitude reduction of ATP affinity.  相似文献   

11.
Fifteen independent 1-nsec MD simulations of fully solvated Ca(2+) saturated calmodulin (CaM) mutant D129N were performed from different initial conditions to provide a sufficient statistical basis to gauge the significance of observed dynamical properties. In all MD simulations the four Ca(2+) ions remained in their binding sites, and retained a single water ligand as observed in the crystal structure. The coordination of Ca(2+) ions in EF-hands I, II, and III was sevenfold. In EF-hand IV, which was perturbed by the mutation of a highly conserved Asp129, an anomalous eightfold Ca(2+) coordination was observed. The Ca(2+) binding loop in EF-hand II was observed to dynamically sample conformations related to the Ca(2+)-free form. Repeated MD simulations implicate two well-defined conformations of Ca(2+) binding loop II, whereas similar effect was not observed for loops I, III, and IV. In 8 out of 15 MD simulations Ca(2+) binding loop II adopted an alternative conformation in which the Thr62 >C=O group was displaced from the Ca(2+) coordination by a water molecule, resulting in the Ca(2+) ion ligated by two water molecules. The alternative conformation of the Ca(2+) binding loop II appears related to the "closed" state involved in conformational exchange previously detected by NMR in the N-terminal domain fragment of CaM and the C-terminal domain fragment of the mutant E140Q. MD simulations suggest that conformations involved in microsecond exchange exist partially preformed on the nanosecond time scale.  相似文献   

12.
Cytochrome c oxidase (CcO) transfers protons from the inner surface of the enzyme to the buried O2 reduction site through two different pathways, termed K and D, and from the outer surface via an undefined route. These proton paths can be inhibited by metals such as zinc or cadmium, but the sites of inhibition have not been established. Anomalous difference Fourier analyses of Rhodobacter sphaeroides CcO crystals, with cadmium added, reveal metal binding sites that include the proposed initial proton donor/acceptor of the K pathway, Glu-101 of subunit II. Mutant forms of CcO that lack Glu-101II (E101A and E101A/H96A) exhibit low activity and eliminate metal binding at this site. Significant activity is restored to E101A and E101A/H96A by adding the lipophilic carboxylic compounds, arachidonic acid and cholic acid, but not by their non-carboxylic analogues. These amphipathic acids likely provide their carboxylic groups as substitute proton donors/acceptors in the absence of Glu-101II, as previously observed for arachidonic acid in mutants that alter Asp-132I of the D pathway. The activity of E101A/H96A is still inhibited by zinc, but this remaining inhibition is nearly eliminated by removal of subunit III, which is known to alter the D pathway. The results identify the Glu-101/His-96 site of subunit II as the site of metal binding that inhibits the uptake of protons into the K pathway and indicate that subunit III contributes to zinc binding and/or inhibition of the D pathway. By removing subunit III from E101A/H96A, thereby eliminating zinc inhibition of the uptake of protons from the inner surface of CcO, we confirm that an external zinc binding site is involved in inhibiting the backflow of protons to the active site.  相似文献   

13.
Digestion with proteinase K or trypsin yields complementary information on conformational transitions of the Ca(2+)-ATPase (SERCA) in the native membrane environment. Distinct digestion patterns are obtained with proteinase K, revealing interconversion of E1 and E2 or E1 approximately P and E2-P states. The pH dependence of digestion patterns shows that, in the presence of Mg(2+), conversion of E2 to E1 pattern occurs (even when Ca(2+) is absent) as H(+) dissociates from acidic residues. Mutational analysis demonstrates that the Glu(309) and Glu(771) acidic residues (empty Ca(2+)-binding sites I and II) are required for stabilization of E2. Glu(309) ionization is most important to yield E1. However, a further transition produced by Ca(2+) binding to E1 (i.e. E1.2Ca(2+)) is still needed for catalytic activation. Following ATP utilization, H(+)/Ca(2+) exchange is involved in the transition from the E1 approximately P.2Ca(2+) to the E2-P pattern, whereby alkaline pH will limit this conformational transition. Complementary experiments on digestion with trypsin exhibit high temperature dependence, indicating that, in the E1 and E2 ground states, the ATPase conformation undergoes strong fluctuations related to internal protein dynamics. The fluctuations are tightly constrained by ATP binding and phosphoenzyme formation, and this constraint must be overcome by thermal activation and substrate-free energy to allow enzyme turnover. In fact, a substantial portion of ATP free energy is utilized for conformational work related to the E1 approximately P.2Ca(2+) to E2-P transition, thereby disrupting high affinity binding and allowing luminal diffusion of Ca(2+). The E2 state and luminal path closure follow removal of conformational constraint by phosphate.  相似文献   

14.
The mechanism of inhibition of the sarcoplamc reticulum (SR) Ca(2+)-ATPase by the fluoroaluminate complexes was investigated. First, AlF4- was shown to bind to the Ca(2+)-free conformation of the enzyme by a slow quasi-irreversible process. The rate constants of the reaction are k+ = 16 x 10(3) M-1 s-1 and k- < 1.5 10(-3) s-1. We directly measured a stoichiometry of about 4.8 nmol of AlF4- bound/mg of protein. Mg2+ was a necessary cofactor for the reaction with a dissociation constant of 3 mM. It was demonstrated (Dupont, Y., and Pougeois, R. (1983) FEBS Lett. 156, 93-98) that phosphorylation by P(i) induced a dehydration of the catalytic site. The same process has been shown here to occur upon AlF4- binding either by the use of Me2SO or by demonstration of an increase of bound 2',3'-O-(2,4,6-trinitrocyclohexadienyldene)adenosine triphosphate fluorescence. Phosphorylation by P(i) is inhibited by the binding of AlF4-. Second, a fluoroaluminate complex, presumably AlF4-, was also shown to bind to the Ca(2+)-bound conformation of the Ca(2+)-ATPase in the presence of ADP and stabilize a E1.Ca2.ADP.AlFx complex. The dissociation constant of the nucleotidic site for ADP was shifted to the micromolar range. The Ca2+ ions bound on the external high affinity sites became occluded upon binding of (ADP + AlFx). We propose that AlF4- mimics P(i) binding to the Ca(2+)-free conformation of the ATPase and stabilizes an intermediate similar to the acyl-phosphate derivative; it also acts as an analogue of the gamma-phosphate of ATP and stabilizes an E1.[Ca2].ADP.AlF4 complex where the Ca2+ ions are occluded.  相似文献   

15.
Arginine vasopressin (AVP) causes increase in intracellular Ca(2+) concentration with an oscillatory pattern. Ca(2+) mobilization is required for AVP-stimulated apical exocytosis in inner medullary collecting duct (IMCD). The mechanistic basis of these Ca(2+) oscillations was investigated by confocal fluorescence microscopy and flash photolysis of caged molecules in perfused IMCD. Photorelease of caged cAMP and direct activation of ryanodine receptors (RyRs) by photorelease of caged cyclic ADP-ribose (cADPR) both mimicked the AVP-induced Ca(2+) oscillations. Preincubation of IMCD with 100 μM 8-bromo-cADPR (a competitive inhibitor of cADPR) delayed the onset and attenuated the magnitude of AVP-induced Ca(2+) oscillations. These observations indicate that the cADPR/RyR pathway is capable of supporting Ca(2+) oscillations and endogenous cADPR plays a major role in the AVP-induced Ca(2+) oscillations in IMCD. In contrast, photorelease of caged inositol 1,4,5-trisphosphate (IP(3)) induced Ca(2+) release but did not maintain sustained Ca(2+) oscillations. Removal of extracellular Ca(2+) halted ongoing AVP-mediated Ca(2+) oscillation, suggesting that it requires extracellular Ca(2+) entry. AVP-induced Ca(2+) oscillation was unaffected by nifedipine. Intracellular Ca(2+) store depletion induced by 20 μM thapsigargin in Ca(2+)-free medium triggered store-operated Ca(2+) entry (SOCE) in IMCD, which was attenuated by 1 μM GdCl(3) and 50 μM SKF-96365. After incubation of IMCD with 1 nM AVP in Ca(2+)-free medium, application of extracellular Ca(2+) also triggered Ca(2+) influx, which was sensitive to GdCl(3) and SKF-96365. In summary, our observations are consistent with the notion that AVP-induced Ca(2+) oscillations in IMCD are mediated by the interplay of Ca(2+) release from RyRs and a Ca(2+) influx mechanism involving nonselective cation channels that resembles SOCE.  相似文献   

16.
Mukherjee S  Kuchroo K  Chary KV 《Biochemistry》2005,44(34):11636-11645
One of the calcium binding proteins from Entamoeba histolytica (EhCaBP) is a 134 amino acid residue long (M(r) approximately 14.9 kDa) double domain EF-hand protein containing four Ca(2+) binding sites. CD and NMR studies reveal that the Ca(2+)-free form (apo-EhCaBP) exists in a partially collapsed form compared to the Ca(2+)-bound (holo) form, which has an ordered structure (PDB ID ). Deuterium exchange studies on the partially structured apo-EhCaBP reveal that the C-terminal domain is better structured than the N-terminal domain. The protein can be reversibly folded and unfolded upon addition of Ca(2+) and EGTA, respectively. Titration shows a slow initial folding of the apo form with increasing Ca(2+) concentration, followed by a highly cooperative folding to its final state at a certain threshold of Ca(2+). Ca(2+) and the EGTA titration taken together show that site II in the N-terminal domain has the highest affinity for Ca(2+) contrary to earlier studies. Further, this study has thrown light on the relative Ca(2+) binding affinity and specificity of each site in the intact protein. A structural model for the partially collapsed form of apo-EhCaBP and its equilibrium folding to its completely folded holo state has been suggested. Large conformational changes seen in transforming from the apo to holo form of EhCaBP suggest that this protein should be functioning as a sensor protein and might have a significant role in host-parasite recognition.  相似文献   

17.
The changes in fluorescence of 1-anilino-8-naphthalenesulfonate (ANS-) have been used to determine binding of ligands to the (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles, isolated from rabbit skeletal muscle. ANS- binds to sarcoplasmic reticulum membranes with an apparent Kd of 3.8 X 10(-5) M. The binding of ANS- had no effect on Ca2+ transport or Ca2+-dependent ATPase activity. EGTA, by binding endogenous Ca2+, increased the fluorescence intensity of bound ANS- by 10-12%. Subsequent addition of ATP, ADP, or Ca2+, in the presence or absence of Mg2+, reversed this change of fluorescence. The binding parameters, as determined by these decreases in fluorescence intensity, were as follows: for ATP, Kd = 1.0 X 10(-5) M, nH = 0.80; for ADP, Kd = 1.2 X 10(-5) M, nH = 0.89; and for Ca2+, Kd = 3.4 X 10(-7) M, nH = 1.8. The binding parameters for ITP and for the nonhydrolyzable analogue, adenyl-5'-yl-beta, gamma-methylene)diphosphate, were similar to those of ATP, but GDP, IDP, CDP, AMP, and cAMP had lower apparent affinities. Millimolar concentrations of pyrophosphate also decreased the fluorescence of bound ANS-, whereas orthophosphate caused a small (2-3%) increase in fluorescence in Ca2+-free media. Vanadate, in the presence of EGTA, decreased the fluorescence of bound ANS-with half-maximal effect at 4 X 10(-5) M. The changes of fluorescence intensity of bound ANS- appear to reflect conformational changes of the (Ca2+, Mg2+)-ATPase, consequent to ligand binding, with the low and high fluorescence intensity species corresponding to the E1 and E2 conformations, respectively. These appear to reflect similar conformational states of the (Ca2+, Mg2+)-ATPase to those reported by changes in intrinsic tryptophan fluorescence (DuPont, Y. (1976) Biochem, Biophys. Res. Commun. 71, 544-550).  相似文献   

18.
D J Weber  A K Meeker  A S Mildvan 《Biochemistry》1991,30(25):6103-6114
The mechanism of the phosphodiesterase reaction catalyzed by staphylococcal nuclease is believed to involve concerted general acid-base catalysis by Arg-87 and Glu-43. The mutual interactions of Arg-87 and Glu-43 were investigated by comparing kinetic and thermodynamic properties of the single mutant enzymes E43S (Glu-43 to Ser) and R87G (Arg-87 to Gly) with those of the double mutant, E43S + R87G, in which both the basic and acidic functions have been inactivated. Denaturation studies with guanidinium chloride, CD, and 600-MHz 1D and 2D proton NMR spectra, indicate all enzyme forms to be predominantly folded in absence of the denaturant and reveal small antagonistic effects of the E43S and R87G mutations on the stability and structure of the wild-type enzyme. The free energies of binding of the divalent cation activator Ca2+, the inhibitor Mn2+, and the substrate analogue 3',5'-pdTp show simple additive effects of the two mutations in the double mutant, indicating that Arg-87 and Glu-43 act independently to facilitate the binding of divalent cations and of 3',5'-pdTP by the wild-type enzyme. The free energies of binding of the substrate, 5'-pdTdA, both in binary E-S and in active ternary E-Ca(2+)-S complexes, show synergistic effects of the two mutations, suggesting that Arg-87 and Glu-43 interact anticooperatively in binding the substrate, possibly straining the substrate by 1.6 kcal/mol in the wild-type enzyme. The large free energy barriers to Vmax introduced by the R87G mutation (delta G1 = 6.5 kcal/mol) and by the E43S mutation (delta G2 = 5.0 kcal/mol) are partially additive in the double mutant (delta G1+2 = 8.1 kcal/mol). These partially additive effects on Vmax are most simply explained by a cooperative component to transition state binding by Arg-87 and Glu-43 of -3.4 kcal/mol. The combination of anticooperative, cooperative, and noncooperative effects of Arg-87 and Glu-43 together lower the kinetic barrier to catalysis by 8.1 kcal/mol.  相似文献   

19.
ADP-ribose pyrophosphatase (ADPRase) catalyzes the divalent metal ion-dependent hydrolysis of ADP-ribose to ribose 5'-phosphate and AMP. This enzyme plays a key role in regulating the intracellular ADP-ribose levels, and prevents nonenzymatic ADP-ribosylation. To elucidate the pyrophosphatase hydrolysis mechanism employed by this enzyme, structural changes occurring on binding of substrate, metal and product were investigated using crystal structures of ADPRase from an extreme thermophile, Thermus thermophilus HB8. Seven structures were determined, including that of the free enzyme, the Zn(2+)-bound enzyme, the binary complex with ADP-ribose, the ternary complexes with ADP-ribose and Zn(2+) or Gd(3+), and the product complexes with AMP and Mg(2+) or with ribose 5'-phosphate and Zn(2+). The structural and functional studies suggested that the ADP-ribose hydrolysis pathway consists of four reaction states: bound with metal (I), metal and substrate (II), metal and substrate in the transition state (III), and products (IV). In reaction state II, Glu-82 and Glu-70 abstract a proton from a water molecule. This water molecule is situated at an ideal position to carry out nucleophilic attack on the adenosyl phosphate, as it is 3.6 A away from the target phosphorus and almost in line with the scissile bond.  相似文献   

20.
Small conductance Ca2+-activated K+ channels (SK channels) are heteromeric complexes of pore-forming alpha subunits and constitutively bound calmodulin (CaM). The binding of CaM is mediated in part by the electrostatic interaction between residues Arg-464 and Lys-467 of SK2 and Glu-84 and Glu-87 of CaM. Heterologous expression of the double charge reversal in SK2, SK2 R464E/K467E (SK2:64/67), did not yield detectable surface expression or channel activity in whole cell or inside-out patch recordings. Coexpression of SK2:64/67 with wild type CaM or CaM1,2,3,4, a mutant lacking the ability to bind Ca2+, rescued surface expression. In patches from cells coexpressing SK2:64/67 and wild type CaM, currents were recorded immediately following excision into Ca2+-containing solution but disappeared within minutes after excision or immediately upon exposure to Ca2+-free solution and were not reactivated upon reapplication of Ca2+-containing solution. Channel activity was restored by application of purified recombinant Ca2+-CaM or exposure to Ca2+-free CaM followed by application of Ca2+-containing solution. Coexpression of the double charge reversal E84R/E87K in CaM (CaM:84/87) with SK2:64/67 reconstituted stable Ca2+-dependent channel activity that was not lost with exposure to Ca2+-free solution. Therefore, Ca2+-independent interactions with CaM are required for surface expression of SK channels, whereas the constitutive association between the two channel subunits is not an essential requirement for gating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号