首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early Middle Jurassic is regarded as the period when sauropods diversified and became major components of the terrestrial ecosystems. Not many sites yield sauropod material of this time; however, both cranial and postcranial material of eusauropods have been found in the Cañadón Asfalto Formation (latest Early Jurassic–early Middle Jurassic) in Central Patagonia (Argentina), which may help to shed light on the early evolution of eusauropods. These eusauropod remains include teeth associated with cranial and mandibular material as well as isolated teeth found at different localities. In this study, an assemblage of sauropod teeth from the Cañadón Asfalto Formation found in four different localities in the area of Cerro Condor (Chubut, Argentina) is used as a mean of assessing sauropod species diversity at these sites. By using dental enamel wrinkling, primarily based on the shape and orientation of grooves and crests of this wrinkling, we define and describe three different morphotypes. With the exception of one taxon, for which no cranial material is currently known, these morphotypes match the local eusauropod diversity as assessed based on postcranial material. Morphotype I is tentatively assigned to Patagosaurus, whereas morphotypes II and III correspond to new taxa, which are also distinguished by associated postcranial material. This study thus shows that enamel wrinkling can be used as a tool in assessing sauropod diversity.  相似文献   

2.
A new record of a sauropodomorph dinosaur is here described from the Middle Jurassic (Aalenian) Saltwick Formation of Whitby (Yorkshire), UK. A single caudal vertebra represents an early sauropodomorph and signifies the earliest recognised eusauropod dinosaur from the United Kingdom. The absence of pleurocoels and a narrow, dorsoventrally deep, but craniocaudally short centrum, suggests a primitive sauropodomorph. Distinct spinopostzygopophyseal laminae rise from the lateral margins of the postzygapophyses and pass caudally along what remains of the neural spine, a character unique to a subgroup of sauropods that includes Barapasaurus, Omeisaurus and other neosauropods and eusauropods. The lack of phylogenetically robust characters in sauropod caudal vertebrae usually makes it difficult to establish affinities, but the absence of mild procoely excludes this specimen from both Diplodocoidea and Lithostrotia. The vertebra cannot be further distinguished from those of a wide range of basal sauropods, cetiosaurids and basal macronarians. However, this plesiomorphic vertebra still signifies the earliest stratigraphic occurrence for a British sauropod dinosaur.  相似文献   

3.
Patterns of late Palaeogene mammalian evolution appear to be very different between Eurasia and North America. Around the Eocene–Oligocene (EO) transition global temperatures in the Northern Hemisphere plummet: following this, European mammal faunas undergo a profound extinction event (the Grande Coupure), while in North America they appear to pass through this temperature event unscathed. Here, we investigate the role of surface uplift to environmental change and mammalian evolution through the Palaeogene (66–23 Ma). Palaeogene regional surface uplift in North America caused large-scale reorganization of precipitation patterns, particularly in the continental interior, in accord with our combined stable isotope and ecometric data. Changes in mammalian faunas reflect that these were dry and high-elevation palaeoenvironments. The scenario of Middle to Late Eocene (50–37 Ma) surface uplift, together with decreasing precipitation in higher-altitude regions of western North America, explains the enigma of the apparent lack of the large-scale mammal faunal change around the EO transition that characterized western Europe. We suggest that North American mammalian faunas were already pre-adapted to cooler and drier conditions preceding the EO boundary, resulting from the effects of a protracted history of surface uplift.  相似文献   

4.
A mid-Permian (Guadalupian epoch) extinction event at approximately 260 Ma has been mooted for two decades. This is based primarily on invertebrate biostratigraphy of Guadalupian–Lopingian marine carbonate platforms in southern China, which are temporally constrained by correlation to the associated Emeishan Large Igneous Province (LIP). Despite attempts to identify a similar biodiversity crisis in the terrestrial realm, the low resolution of mid-Permian tetrapod biostratigraphy and a lack of robust geochronological constraints have until now hampered both the correlation and quantification of terrestrial extinctions. Here we present an extensive compilation of tetrapod-stratigraphic data analysed by the constrained optimization (CONOP) algorithm that reveals a significant extinction event among tetrapods within the lower Beaufort Group of the Karoo Basin, South Africa, in the latest Capitanian. Our fossil dataset reveals a 74–80% loss of generic richness between the upper Tapinocephalus Assemblage Zone (AZ) and the mid-Pristerognathus AZ that is temporally constrained by a U–Pb zircon date (CA-TIMS method) of 260.259 ± 0.081 Ma from a tuff near the top of the Tapinocephalus AZ. This strengthens the biochronology of the Permian Beaufort Group and supports the existence of a mid-Permian mass extinction event on land near the end of the Guadalupian. Our results permit a temporal association between the extinction of dinocephalian therapsids and the LIP volcanism at Emeishan, as well as the marine end-Guadalupian extinctions.  相似文献   

5.
The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New 40Ar/39Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b.  相似文献   

6.
The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.  相似文献   

7.
Abstract: The sauropod dinosaur ‘Bothriospondylus’, originally named on the basis of Late Jurassic remains from England, is demonstrated to be invalid, and the characters used to diagnose it are shown to be obsolescent features which are widespread throughout Sauropoda. Material referred to this genus spans a temporal range from the Middle Jurassic until the early Late Cretaceous and has been described from five different countries, across three continents. These remains represent a wide array of sauropod groups, comprising non‐neosauropod eusauropods, a macronarian, titanosauriforms (including at least one definite brachiosaurid) and a rebbachisaurid. The type material of the Middle Jurassic ‘B. madagascariensis’ represents a derived non‐neosauropod eusauropod and possesses two potential autapomorphies. However, as a result of the fragmentary nature of the material and the uncertainty surrounding its association, a new taxon is not erected. Of the numerous specimens referred to ‘Bothriospondylus’, however, several remains are considered diagnostic: Ornithopsis hulkei (Early Cretaceous, UK), Lapparentosaurus madagascariensis (Middle Jurassic, Madagascar) and Nopcsaspondylus alarconensis (early Late Cretaceous, Argentina). At least three types of sauropod were present in the Bathonian (Middle Jurassic) of north‐west Madagascar, with a basal eusauropod (Archaeodontosaurus), a more derived eusauropod (‘B. madagascariensis’) and a titanosauriform (Lapparentosaurus) all approximately contemporaneous. Palaeocontinental reconstructions suggest that Middle Jurassic Madagascan sauropods would still have been capable of global biotic interchange, and this is perhaps reflected in their diverse assemblage. Re‐evaluation of these Malagasy forms has shed new light on this important time period in sauropod evolution.  相似文献   

8.
The Middle Miocene climatic cooling (MCC) is a global event recorded synchronously in the marine and continental realms by several geo- and bioindicators around 15-13.5 Ma. The temporal distribution of European plants and ectothermic vertebrates indicates a similar response to the MCC around 15-13.5 Ma. According to the existing correlations of the European mammalian biochronological time scale to the Geomagnetic Polarity Time Scale (GPTS), a cenogram analysis revealed an important reorganisation of the Middle Miocene European terrestrial mammalian faunas that seems to take place later, around 11.5-11 Ma. This discrepancy between the timing of faunal changes can be solved by considering the recent biochronological and magnetostratigraphic data leading to reinterpretations of the debated ages of several Middle Miocene localities that need to be placed before the MCC event.  相似文献   

9.
The Lake Malawi haplochromine cichlid flock is one of the largest vertebrate adaptive radiations. The geographical source of the radiation has been assumed to be rivers to the south and east of Lake Malawi, where extant representatives of the flock are now present. Here, we provide mitochondrial DNA evidence suggesting the sister taxon to the Lake Malawi radiation is within the Great Ruaha river in Tanzania, north of Lake Malawi. Estimates of the time of divergence between the Lake Malawi flock and this riverine sister taxon range from 2.13 to 6.76 Ma, prior to origins of the current radiation 1.20–4.06 Ma. These results are congruent with evaluations of 2–3.75 Ma fossil material that suggest past faunal connections between Lake Malawi and the Ruaha. We propose that ancestors of the Malawi radiation became isolated within the catchment during Pliocene rifting that formed both Lake Malawi and the Kipengere/Livingstone mountain range, before colonizing rivers to the south and east of the lake region and radiating within the lake basin. Identification of this sister taxon allows tests of whether standing genetic diversity has predisposed Lake Malawi cichlids to rapid speciation and adaptive radiation.  相似文献   

10.
Mosasauroids are conventionally conceived of as gigantic, obligatorily aquatic marine lizards (1000s of specimens from marine deposited rocks) with a cosmopolitan distribution in the Late Cretaceous (90–65 million years ago [mya]) oceans and seas of the world. Here we report on the fossilized remains of numerous individuals (small juveniles to large adults) of a new taxon, Pannoniasaurus inexpectatus gen. et sp. nov. from the Csehbánya Formation, Hungary (Santonian, Upper Cretaceous, 85.3–83.5 mya) that represent the first known mosasauroid that lived in freshwater environments. Previous to this find, only one specimen of a marine mosasauroid, cf. Plioplatecarpus sp., is known from non-marine rocks in Western Canada. Pannoniasaurus inexpectatus gen. et sp. nov. uniquely possesses a plesiomorphic pelvic anatomy, a non-mosasauroid but pontosaur-like tail osteology, possibly limbs like a terrestrial lizard, and a flattened, crocodile-like skull. Cladistic analysis reconstructs P. inexpectatus in a new clade of mosasauroids: (Pannoniasaurus (Tethysaurus (Yaguarasaurus, Russellosaurus))). P. inexpectatus is part of a mixed terrestrial and freshwater faunal assemblage that includes fishes, amphibians turtles, terrestrial lizards, crocodiles, pterosaurs, dinosaurs and birds.  相似文献   

11.
Dinosaur remains from the Arabian subcontinent are exceedingly rare, and those that have been documented manifest indeterminate affinities. Consequently the discovery of a small, but diagnostic, accumulation of elements from Campanian-Maastrichtian (∼75 Ma) deposits in northwestern Saudi Arabia is significant because it constitutes the first taxonomically identifiable dinosaur material described from the Arabian Peninsula. The fossils include a series of possible lithostrotian titanosaur caudal vertebrae, and some isolated theropod marginal teeth that share unique character states and metric parameters (analyzed using multivariate statistical methods) with derived abelisaurids – this is the first justifiable example of a non-avian carnivorous dinosaur clade from Arabia. The recognition of titanosaurians and abelisaurids from Saudi Arabia extends the palaeogeographical range of these groups along the entire northern Gondwanan margin during the latest Cretaceous. Moreover, given the extreme paucity of coeval occurrences elsewhere, the Saudi Arabian fossils provide a tantalizing glimpse into dinosaurian assemblage diversity within the region.  相似文献   

12.
Ecosystems are complex structures with interacting abiotic and biotic processes evolving with ongoing succession. However, limited knowledge exists on the very initial phase of ecosystem development and colonization. Here, we report results of a comprehensive ecosystem development monitoring for twelve floodplain pond mesocosms (FPM; 23.5 m × 7.5 m × 1.5 m each) located in south‐western Germany. In total, 20 abiotic and biotic parameters, including structural and functional variables, were monitored for 21 months after establishment of the FPMs. The results showed evolving ecosystem development and primary succession in all FPMs, with fluctuating abiotic conditions over time. Principal component analyses and redundancy analyses revealed season and succession time (i.e., time since ecosystem establishment) to be significant drivers of changes in environmental conditions. Initial colonization of both aquatic (i.e., water bodies) and terrestrial (i.e., riparian land areas) parts of the pond ecosystems occurred within the first month, with subsequent season‐specific increases in richness and abundance for aquatic and terrestrial taxa over the entire study period. Abiotic environmental conditions and aquatic and terrestrial communities showed increasing interpond variations over time, that is, increasing heterogeneity among the FPMs due to natural environmental divergence. However, both functional variables assessed (i.e., aquatic and terrestrial litter decomposition) showed opposite patterns as litter decomposition rates slightly decreased over time and interpond differences converged with successional ecosystem developments. Overall, our results provide rare insights into the abiotic and biotic conditions and processes during the initial stages of freshwater ecosystem formation, as well as into structural and functional developments of the aquatic and terrestrial environment of newly established pond ecosystems.  相似文献   

13.
The end-Permian biotic crisis (∼252.5 Ma) represents the most severe extinction event in Earth''s history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids (‘mammal-like reptiles’), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates.  相似文献   

14.
The interpretation of biotic changes in the geological past relies on the assumption that samples from different time intervals represent an equivalent suite of natural sampling conditions. As a result, detailed investigations of taphonomic regimes during intervals of major biotic upheaval, such as mass extinctions, are crucial. In this paper, we have used variations in the frequency of chemical and mechanical sporomorph (pollen and spore) damage as a guide to taphonomic regimes across the Triassic–Jurassic mass extinction (Tr-J; ∼201.3 Ma) at a boundary section at Astartekløft, East Greenland. We find that the frequency of sporomorph damage is extremely variable in samples from this locality. This likely reflects a combination of taxon-specific susceptibility to damage and the mixing of sporomorphs from a mosaic of environments and taphonomic regimes. The stratigraphic interval containing evidence of plant extinction and compositional change in the source vegetation at Astartekløft is not marked by a consistent rise or fall in the frequency of sporomorph damage. This indicates that natural taphonomic regimes did not shift radically during this critical interval. We find no evidence of a consistent relationship between the taxonomic richness of sporomorph assemblages and the frequency of damage among sporomorphs at Astartekløft. This indicates that previously reported patterns of sporomorph richness across the Tr-J at this locality are likely to be robust. Taken together, our results suggest that the patterns of vegetation change at Astartekløft represent a real biological response to environmental change at the Tr-J.  相似文献   

15.
BackgroundIn the region of South Limburg, the Netherlands, a shared ST-elevation myocardial infarction (STEMI) networking system (SLIM network) was implemented. During out-of-office hours, two percutaneous coronary intervention (PCI) centres—Maastricht University Medical Centre and Zuyderland Medical Centre—are supported by the same interventional cardiologist. The aim of this study was to analyse performance indicators within this network and to compare them with contemporary European Society of Cardiology guidelines.MethodsKey time indicators for an all-comer STEMI population were registered by the emergency medical service and the PCI centres. The time measurements showed a non-Gaussian distribution; they are presented as median with 25th and 75th percentiles.ResultsBetween 1 February 2018 and 31 March 2019, a total of 570 STEMI patients were admitted to the participating centres. The total system delay (from emergency call to needle time) was 65 min (53–77), with a prehospital system delay of 40 min (34–47) and a door-to-needle time of 22 min (15–34). Compared with in-office hours, out-of-office hours significantly lengthened system delays (55 (47–66) vs 70 min (62–81), p < 0.001), emergency medical service transport times (29 (24–34) vs 35 min (29–40), p < 0.001) and door-to-needle times (17 (14–26) vs 26 min (18–37), p < 0.001).ConclusionsWith its effective patient pathway management, the SLIM network was able to meet the quality criteria set by contemporary European revascularisation guidelines.  相似文献   

16.
The Late Jurassic to Early Cretaceous interval represents a time of environmental upheaval and cataclysmic events, combined with disruptions to terrestrial and marine ecosystems. Historically, the Jurassic/Cretaceous (J/K) boundary was classified as one of eight mass extinctions. However, more recent research has largely overturned this view, revealing a much more complex pattern of biotic and abiotic dynamics than has previously been appreciated. Here, we present a synthesis of our current knowledge of Late Jurassic–Early Cretaceous events, focusing particularly on events closest to the J/K boundary. We find evidence for a combination of short‐term catastrophic events, large‐scale tectonic processes and environmental perturbations, and major clade interactions that led to a seemingly dramatic faunal and ecological turnover in both the marine and terrestrial realms. This is coupled with a great reduction in global biodiversity which might in part be explained by poor sampling. Very few groups appear to have been entirely resilient to this J/K boundary ‘event’, which hints at a ‘cascade model’ of ecosystem changes driving faunal dynamics. Within terrestrial ecosystems, larger, more‐specialised organisms, such as saurischian dinosaurs, appear to have suffered the most. Medium‐sized tetanuran theropods declined, and were replaced by larger‐bodied groups, and basal eusauropods were replaced by neosauropod faunas. The ascent of paravian theropods is emphasised by escalated competition with contemporary pterosaur groups, culminating in the explosive radiation of birds, although the timing of this is obfuscated by biases in sampling. Smaller, more ecologically diverse terrestrial non‐archosaurs, such as lissamphibians and mammaliaforms, were comparatively resilient to extinctions, instead documenting the origination of many extant groups around the J/K boundary. In the marine realm, extinctions were focused on low‐latitude, shallow marine shelf‐dwelling faunas, corresponding to a significant eustatic sea‐level fall in the latest Jurassic. More mobile and ecologically plastic marine groups, such as ichthyosaurs, survived the boundary relatively unscathed. High rates of extinction and turnover in other macropredaceous marine groups, including plesiosaurs, are accompanied by the origin of most major lineages of extant sharks. Groups which occupied both marine and terrestrial ecosystems, including crocodylomorphs, document a selective extinction in shallow marine forms, whereas turtles appear to have diversified. These patterns suggest that different extinction selectivity and ecological processes were operating between marine and terrestrial ecosystems, which were ultimately important in determining the fates of many key groups, as well as the origins of many major extant lineages. We identify a series of potential abiotic candidates for driving these patterns, including multiple bolide impacts, several episodes of flood basalt eruptions, dramatic climate change, and major disruptions to oceanic systems. The J/K transition therefore, although not a mass extinction, represents an important transitional period in the co‐evolutionary history of life on Earth.  相似文献   

17.
The sudden appearance of Asian dinosaur clades within Lower Cretaceous strata of western North America has long been recognised as a biotic dispersion event related to initial establishment of a Beringian land bridge. To date, uncertainty exists regarding the timing of the Early Cretaceous Laurasian interchange event (EKLInE) and the pattern of associated biotic dispersal. Here, we report a tyrannosauroid premaxillary tooth (FMNH PR 2750) from the Cloverly Formation, Wyoming, USA, that pushes back the earliest Cretaceous record of the clade in North America. Although fragmentary, the tooth is consistent with mounting evidence for a pre-108 Ma initiation of EKLInE and earliest Albian emplacement of Beringia. Previous authors have considered the Aptian/Albian of western North America a depauperate dinosaur fauna, characterised by regional extinction and diversity decline. Documentation of Albian tyrannosauroids in the region indicates a more dynamic ecosystem than previously appreciated and marks an early start to faunal mixing between immigrant and endemic dinosaur clades. Finally, we find that the enamel microstructure of FMNH PR 2750 conforms to the morphotype of tyrannosaurids, yet exhibits poor columnar differentiation. This morphology bolsters prior interpretations on the phylogenetic utility of enamel microstructure and suggests a trend of increasing enamel complexity within Tyrannosauroidea.  相似文献   

18.
Middle Miocene (14.8–11.9 Ma) deep-sea sediments from ODP Hole 747A (Kerguelen Plateau, southern Indian Ocean) contain abundant, well-preserved and diverse planktonic foraminiferal assemblages. A detailed study of the climatic and hydrographic changes that occurred in this region during the Middle Miocene Climatic Transition led to the identification of an intense cooling phase (the Middle Miocene Shift). Abundance fluctuations of planktonic foraminiferal species with different paleoclimatic affinities, and oxygen and carbon stable isotopes have been integrated in a multi-proxy approach. Reconstruction of changes in foraminiferal faunal composition and diversity through time were the basis for identification of three foraminiferal biofacies. The most prominent faunal change took place at 13.8 Ma, when a fauna with warm-water affinity (marked by high abundance of Globorotalia miozea group and Globoturborotalita woodi plexus) was replaced by an oligotypic, opportunistic fauna with typical polar characters and dominated by neogloboquadrinids. This faunal change is interpreted as the result of foraminiferal migration from adjacent bioprovinces, caused by modifications in climate and hydrography. A positive 2.0‰ shift in δ18O (interpreted as the Mi3 event) and a related positive 1.0‰ shift in δ13C (corresponding to the CM6 event) accompanied this faunal turnover. These are interpreted to reflect substantial reorganization of Southern Ocean waters, the northward migration of the Polar Front and a strong increase in primary productivity. The second faunal change took place at 12.9 Ma and was characterized by the gradual decrease in abundance of the neogloboquadrinids and the recovery of Globorotalia praescitula/scitula group and Globigerinita glutinata. A positive 1.5‰ shift in δ18O (interpreted as the Mi4 event) and a concurrent gradual negative shift in δ13C accompanied this faunal change, witnessing further modifications of the climate/ocean system. Variations in sea surface temperature, considered as the main factor causing changes of surface hydrography at the Kerguelen Plateau, seem to have been driven by obliquity and long-term eccentricity, thus suggesting a key role played by the astronomical forcing on the evolution of Southern Ocean dynamics during the Middle Miocene. Also an evident 1.2 Myr modulation of the δ13C record suggests a main control of the long-term obliquity cycles on the carbon cycle dynamics. Particularly, the Mi3/CM6 events exactly fit with a node of the 1.2 Myr modulation cycles. This confirms the key role played by orbital parameters on high-latitude temperatures and Antarctic ice volume, and indirectly on global carbon burial and/or productivity. This climatic transition was marked also by changes in surface hydrography. From 14.8 to 13.8 Ma an intermediate-strength thermocline controlled by seasonality developed just below the photic zone. Weaker seasonality characterized the interval from 13.8 to 12.9 Ma, when the thermocline became shallower and sharper and favored intermediate-water foraminifers. From 12.9 Ma, seasonality increased again and an intermediate-strength thermocline re-developed.  相似文献   

19.
Insect herbivores are considered vulnerable to extinctions of their plant hosts. Previous studies of insect-damaged fossil leaves in the US Western Interior showed major plant and insect herbivore extinction at the Cretaceous–Palaeogene (K–T) boundary. Further, the regional plant–insect system remained depressed or ecologically unbalanced throughout the Palaeocene. Whereas Cretaceous floras had high plant and insect-feeding diversity, all Palaeocene assemblages to date had low richness of plants, insect feeding or both. Here, we use leaf fossils from the middle Palaeocene Menat site, France, which has the oldest well-preserved leaf assemblage from the Palaeocene of Europe, to test the generality of the observed Palaeocene US pattern. Surprisingly, Menat combines high floral diversity with high insect activity, making it the first observation of a ‘healthy’ Palaeocene plant–insect system. Furthermore, rich and abundant leaf mines across plant species indicate well-developed host specialization. The diversity and complexity of plant–insect interactions at Menat suggest that the net effects of the K–T extinction were less at this greater distance from the Chicxulub, Mexico, impact site. Along with the available data from other regions, our results show that the end-Cretaceous event did not cause a uniform, long-lasting depression of global terrestrial ecosystems. Rather, it gave rise to varying regional patterns of ecological collapse and recovery that appear to have been strongly influenced by distance from the Chicxulub structure.  相似文献   

20.
The rise of dinosaurs was a major event in vertebrate history, but the timing of the origin and early diversification of the group remain poorly constrained. Here, we describe Nyasasaurus parringtoni gen. et sp. nov., which is identified as either the earliest known member of, or the sister–taxon to, Dinosauria. Nyasasaurus possesses a unique combination of dinosaur character states and an elevated growth rate similar to that of definitive early dinosaurs. It demonstrates that the initial dinosaur radiation occurred over a longer timescale than previously thought (possibly 15 Myr earlier), and that dinosaurs and their immediate relatives are better understood as part of a larger Middle Triassic archosauriform radiation. The African provenance of Nyasasaurus supports a southern Pangaean origin for Dinosauria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号