首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cumulative cultural evolution is what 'makes us odd'; our capacity to learn facts and techniques from others, and to refine them over generations, plays a major role in making human minds and lives radically different from those of other animals. In this article, I discuss cognitive processes that are known collectively as 'cultural learning' because they enable cumulative cultural evolution. These cognitive processes include reading, social learning, imitation, teaching, social motivation and theory of mind. Taking the first of these three types of cultural learning as examples, I ask whether and to what extent these cognitive processes have been adapted genetically or culturally to enable cumulative cultural evolution. I find that recent empirical work in comparative psychology, developmental psychology and cognitive neuroscience provides surprisingly little evidence of genetic adaptation, and ample evidence of cultural adaptation. This raises the possibility that it is not only 'grist' but also 'mills' that are culturally inherited; through social interaction in the course of development, we not only acquire facts about the world and how to deal with it (grist), we also build the cognitive processes that make 'fact inheritance' possible (mills).  相似文献   

2.
Culturally supported accumulation (or ratcheting) of technological complexity is widely seen as characterizing hominin technology relative to that of the extant great apes, and thus as representing a threshold in cultural evolution. To explain this divide, we modeled the process of cultural accumulation of technology, which we defined as adding new actions to existing ones to create new functional combinations, based on a model for great ape tool use. The model shows that intraspecific and interspecific variation in the presence of simple and cumulative technology among extant orangutans and chimpanzees is largely due to variation in sociability, and hence opportunities for social learning. The model also suggests that the adoption of extensive allomaternal care (cooperative breeding) in early Pleistocene Homo, which led to an increase in sociability and to teaching, and hence increased efficiency of social learning, was enough to facilitate technological ratcheting. Hence, socioecological changes, rather than advances in cognitive abilities, can account for the cumulative cultural changes seen until the origin of the Acheulean. The consequent increase in the reliance on technology could have served as the pacemaker for increased cognitive abilities. Our results also suggest that a more important watershed in cultural evolution was the rise of donated culture (technology or concepts), in which technology or concepts was transferred to naïve individuals, allowing them to skip many learning steps, and specialization arose, which allowed individuals to learn only a subset of the population's skills.  相似文献   

3.
Cumulative cultural evolution is the term given to a particular kind of social learning, which allows for the accumulation of modifications over time, involving a ratchet-like effect where successful modifications are maintained until they can be improved upon. There has been great interest in the topic of cumulative cultural evolution from researchers from a wide variety of disciplines, but until recently there were no experimental studies of this phenomenon. Here, we describe our motivations for developing experimental methods for studying cumulative cultural evolution and review the results we have obtained using these techniques. The results that we describe have provided insights into understanding the outcomes of cultural processes at the population level. Our experiments show that cumulative cultural evolution can result in adaptive complexity in behaviour and can also produce convergence in behaviour. These findings lend support to ideas that some behaviours commonly attributed to natural selection and innate tendencies could in fact be shaped by cultural processes.  相似文献   

4.
In The Secret of Our Success, Joseph Henrich claims that human beings are unique—different from all other animals—because we engage in cumulative cultural evolution. It is the technological and social products of cumulative cultural evolution, not the intrinsic rationality or ‘smartness’ of individual humans, that enable us to live in a huge range of different habitats, and to dominate most of the creatures who share those habitats with us. We are sympathetic to this general view, the latest expression of the ‘California school’s’ view of cultural evolution, and impressed by the lively and interesting way that Henrich handles evidence from anthropology, economics, and many fields of biology. However, because we think it is time for cultural evolutionists to get down to details, this essay review raises questions about Henrich’s analysis of both the cognitive processes and the selection processes that contribute to cumulative cultural evolution. In the former case, we argue that cultural evolutionists need to make more extensive use of cognitive science, and to consider the evidence that mechanisms of cultural learning are products as well as processes of cultural evolution. In the latter case, we ask whether the California school is really serious about selection, or whether it is offering a merely ‘kinetic’ view of cultural evolution, and, assuming the former, outline four potential models of cultural selection that it would be helpful to distinguish more clearly.  相似文献   

5.
Previous work on mathematical models of cultural evolution has mainly focused on the diffusion of simple cultural elements. However, a characteristic feature of human cultural evolution is the seemingly limitless appearance of new and increasingly complex cultural elements. Here, we develop a general modelling framework to study such cumulative processes, in which we assume that the appearance and disappearance of cultural elements are stochastic events that depend on the current state of culture. Five scenarios are explored: evolution of independent cultural elements, stepwise modification of elements, differentiation or combination of elements and systems of cultural elements. As one application of our framework, we study the evolution of cultural diversity (in time as well as between groups).  相似文献   

6.
Abstract

Cumulative technological evolution has been suggested to explain the existence of different pandanus tool designs manufactured by New Caledonian crows. Circumstantial evidence from the distribution of the three tool designs that they manufacture suggests transmission of the designs probably involves accurate social learning, a characteristic considered essential for the cumulative evolution of tools. Recently, Kenward et al. (2005) reported that four hand‐raised crows developed basic stick tool use without social learning. This finding cast doubt on the importance of social learning in the evolution of crows’ pandanus tools in the wild. Here, we report that a naïve male crow at Parc Zoo‐Forestier, Nouméa, developed proficient stick tool use without social input in 2002. In 2004, four captive crows, including the naïve male, that were inexperienced with pandanus material were given an opportunity to use and/or manufacture pandanus tools. Only two of the four birds used the tools but none manufactured tools. Our preliminary findings and the work with the four hand‐raised crows keep open the possibility that the evolution of crows’ pandanus tool designs is based on social learning. We propose that social learning and a disposition to develop basic tool use without social input are both essential cognitive requirements for cumulative technological evolution.  相似文献   

7.
Unlike other animals, humans are heavily dependent on cumulative bodies of culturally learned information. Selective processes operating on this socially learned information can produce complex, functionally integrated, behavioural repertoires-cultural adaptations. To understand such non-genetic adaptations, evolutionary theorists propose that (i) natural selection has favoured the emergence of psychological biases for learning from those individuals most likely to possess adaptive information, and (ii) when these psychological learning biases operate in populations, over generations, they can generate cultural adaptations. Many laboratory experiments now provide evidence for these psychological biases. Here, we bridge from the laboratory to the field by examining if and how these biases emerge in a small-scale society. Data from three cultural domains-fishing, growing yams and using medicinal plants-show that Fijian villagers (ages 10 and up) are biased to learn from others perceived as more successful/knowledgeable, both within and across domains (prestige effects). We also find biases for sex and age, as well as proximity effects. These selective and centralized oblique transmission networks set up the conditions for adaptive cultural evolution.  相似文献   

8.
Cumulative culture underpins humanity's enormous success as a species. Claims that other animals are incapable of cultural ratcheting are prevalent, but are founded on just a handful of empirical studies. Whether cumulative culture is unique to humans thus remains a controversial and understudied question that has far-reaching implications for our understanding of the evolution of this phenomenon. We investigated whether one of human's two closest living primate relatives, chimpanzees, are capable of a degree of cultural ratcheting by exposing captive populations to a novel juice extraction task. We found that groups (N = 3) seeded with a model trained to perform a tool modification that built upon simpler, unmodified tool use developed the seeded tool method that allowed greater juice returns than achieved by groups not exposed to a trained model (non-seeded controls; N = 3). One non-seeded group also discovered the behavioral sequence, either by coupling asocial and social learning or by repeated invention. This behavioral sequence was found to be beyond what an additional control sample of chimpanzees (N = 1 group) could discover for themselves without a competent model and lacking experience with simpler, unmodified tool behaviors. Five chimpanzees tested individually with no social information, but with experience of simple unmodified tool use, invented part, but not all, of the behavioral sequence. Our findings indicate that (i) social learning facilitated the propagation of the model-demonstrated tool modification technique, (ii) experience with simple tool behaviors may facilitate individual discovery of more complex tool manipulations, and (iii) a subset of individuals were capable of learning relatively complex behaviors either by learning asocially and socially or by repeated invention over time. That chimpanzees learn increasingly complex behaviors through social and asocial learning suggests that humans' extraordinary ability to do so was built on such prior foundations.  相似文献   

9.
10.
Cultural niche construction is a uniquely potent source of selection on human populations, and a major cause of recent human evolution. Previous theoretical analyses have not, however, explored the local effects of cultural niche construction. Here, we use spatially explicit coevolutionary models to investigate how cultural processes could drive selection on human genes by modifying local resources. We show that cultural learning, expressed in local niche construction, can trigger a process with dynamics that resemble runaway sexual selection. Under a broad range of conditions, cultural niche-constructing practices generate selection for gene-based traits and hitchhike to fixation through the build up of statistical associations between practice and trait. This process can occur even when the cultural practice is costly, or is subject to counteracting transmission biases, or the genetic trait is selected against. Under some conditions a secondary hitchhiking occurs, through which genetic variants that enhance the capability for cultural learning are also favoured by similar dynamics. We suggest that runaway cultural niche construction could have played an important role in human evolution, helping to explain why humans are simultaneously the species with the largest relative brain size, the most potent capacity for niche construction and the greatest reliance on culture.  相似文献   

11.
Hunting and gathering is, evolutionarily, the defining subsistence strategy of our species. Studying how children learn foraging skills can, therefore, provide us with key data to test theories about the evolution of human life history, cognition, and social behavior. Modern foragers, with their vast cultural and environmental diversity, have mostly been studied individually. However, cross-cultural studies allow us to extrapolate forager-wide trends in how, when, and from whom hunter-gatherer children learn their subsistence skills. We perform a meta-ethnography, which allows us to systematically extract, summarize, and compare both quantitative and qualitative literature. We found 58 publications focusing on learning subsistence skills. Learning begins early in infancy, when parents take children on foraging expeditions and give them toy versions of tools. In early and middle childhood, children transition into the multi-age playgroup, where they learn skills through play, observation, and participation. By the end of middle childhood, most children are proficient food collectors. However, it is not until adolescence that adults (not necessarily parents) begin directly teaching children complex skills such as hunting and complex tool manufacture. Adolescents seek to learn innovations from adults, but they themselves do not innovate. These findings support predictive models that find social learning should occur before individual learning. Furthermore, these results show that teaching does indeed exist in hunter-gatherer societies. And, finally, though children are competent foragers by late childhood, learning to extract more complex resources, such as hunting large game, takes a lifetime.  相似文献   

12.
The variety and complexity of human-made tools are unique in the animal kingdom. Research investigating why human tool use is special has focused on the role of social learning: while non-human great apes acquire tool-use behaviours mostly by individual (re-)inventions, modern humans use imitation and teaching to accumulate innovations over time. However, little is known about tool-use behaviours that humans can invent individually, i.e. without cultural knowledge. We presented 2- to 3.5-year-old children with 12 problem-solving tasks based on tool-use behaviours shown by great apes. Spontaneous tool use was observed in 11 tasks. Additionally, tasks which occurred more frequently in wild great apes were also solved more frequently by human children. Our results demonstrate great similarity in the spontaneous tool-use abilities of human children and great apes, indicating that the physical cognition underlying tool use shows large overlaps across the great ape species. This suggests that humans are neither born with special physical cognition skills, nor that these skills have degraded due to our species’ long reliance of social learning in the tool-use domain.  相似文献   

13.
A deflationary perspective on theories of cultural evolution, in particular dual-inheritance theory, has recently been proposed by Lewens. On this ‘pop-culture’ analysis, dual-inheritance theorists apply population thinking to cultural phenomena, without claiming that cultural items evolve by natural selection. This paper argues against this pop-culture analysis of dual-inheritance theory. First, it focuses on recent dual-inheritance models of specific patterns of cultural change. These models exemplify population thinking without a commitment to natural selection of cultural items. There are grounds, however, for doubting the added explanatory value of the models in their disciplinary context—and thus grounds for engaging in other potentially explanatory projects based on dual-inheritance theory. One such project is suggested by advocates of the theory. Some of the motivational narratives that they offer can be interpreted as setting up an adaptationist project with regard to cumulative change in cultural items. We develop this interpretation here. On it, dual-inheritance theory features two interrelated selection processes, one on the level of genetically inherited learning mechanisms, another on the level of the cultural items transmitted through these mechanisms. This interpretation identifies a need for further modelling efforts, but also offers scope for enhancing the explanatory power of dual-inheritance theory.  相似文献   

14.
Active cultural transmission of fitness-enhancing behavior (sometimes called “teaching”) can be seen as a costly strategy: one for which its evolutionary stability poses a Darwinian puzzle. In this article, we offer a biological market model of cultural transmission that substitutes or complements existing kin selection-based proposals for the evolution of cultural capacities. We demonstrate how a biological market can account for the evolution of teaching when individual learners are the exclusive focus of social learning (such as in a fast-changing environment). We also show how this biological market can affect the dynamics of cumulative culture. The model works best when it is difficult to have access to the observation of the behavior without the help of the actor. However, in contrast to previous non-mathematical hypotheses for the evolution of teaching, we show how teaching evolves, even when innovations are insufficiently opaque and therefore vulnerable to acquisition by emulators via inadvertent transmission. Furthermore, teaching in a biological market is an important precondition for enhancing individual learning abilities.  相似文献   

15.
Many animals use tools but only humans are generally considered to have the cognitive sophistication required for cumulative technological evolution. Three important characteristics of cumulative technological evolution are: (i) the diversification of tool design; (ii) cumulative change; and (iii) high-fidelity social transmission. We present evidence that crows have diversified and cumulatively changed the design of their pandanus tools. In 2000 we carried out an intensive survey in New Caledonia to establish the geographical variation in the manufacture of these tools. We documented the shapes of 5550 tools from 21 sites throughout the range of pandanus tool manufacture. We found three distinct pandanus tool designs: wide tools, narrow tools and stepped tools. The lack of ecological correlates of the three tool designs and their different, continuous and overlapping geographical distributions make it unlikely that they evolved independently. The similarities in the manufacture method of each design further suggest that pandanus tools have gone through a process of cumulative change from a common historical origin. We propose a plausible scenario for this rudimentary cumulative evolution.  相似文献   

16.
Although many species display behavioural traditions, human culture is unique in the complexity of its technological, symbolic and social contents. Is this extraordinary complexity a product of cognitive evolution, cultural evolution or some interaction of the two? Answering this question will require a much better understanding of patterns of increasing cultural diversity, complexity and rates of change in human evolution. Palaeolithic stone tools provide a relatively abundant and continuous record of such change, but a systematic method for describing the complexity and diversity of these early technologies has yet to be developed. Here, an initial attempt at such a system is presented. Results suggest that rates of Palaeolithic culture change may have been underestimated and that there is a direct relationship between increasing technological complexity and diversity. Cognitive evolution and the greater latitude for cultural variation afforded by increasingly complex technologies may play complementary roles in explaining this pattern.  相似文献   

17.
The role of cultural group selection in the evolution of human cooperation is hotly debated. It has been argued that group selection is more effective in cultural evolution than in genetic evolution, because some forms of cultural transmission (conformism and/or the tendency to follow a leader) reduce intra-group variation while creating stable cultural variation between groups. This view is supported by some models, while other models lead to contrasting and sometimes opposite conclusions. A consensus view has not yet been achieved, partly because the modelling studies differ in their assumptions on the dynamics of cultural transmission and the mode of group selection. To clarify matters, we created an individual-based model allowing for a systematic comparison of how different social learning rules governing cultural transmission affect the evolution of cooperation in a group-structured population. We consider two modes of group selection (selection by group replacement or by group contagion) and systematically vary the frequency and impact of group-level processes. From our simulations we conclude that the outcome of cultural evolution strongly reflects the interplay of social learning rules and the mode of group selection. For example, conformism hampers or even prevents the evolution of cooperation if group selection acts via contagion; it may facilitate the evolution of cooperation if group selection acts via replacement. In contrast, leader-imitation promotes the evolution of cooperation under a broader range of conditions.  相似文献   

18.
In order to identify the conditions that favored the flourishing of primate tool use into hominid technology, we examine inter- and intraspecific variation in manufacture and use of tools in extant nonhuman primates, and develop a model to account for their distribution. We focus on tools used in acquiring food, usually by extraction. Any model for the evolution of the use of feeding tools must explain why tool use is found in only a small subset of primate species, why many of these species use tools much more readily in captivity, why routine reliance on feeding tools is found in only two species of ape, and why there is strong geographic variation within these two species. Because ecological factors alone cannot explain the distribution of tool use in the wild, we develop a model that focuses on social and cognitive factors affecting the invention and transmission of tool-using skills. The model posits that tool use in the wild depends on suitable ecological niches (especially extractive foraging) and the manipulative skills that go with them, a measure of intelligence that enables rapid acquisition of complex skills (through both invention and, more importantly, observational learning), and social tolerance in a gregarious setting (which facilitates both invention and transmission). The manipulative skills component explains the distribution across species of the use of feeding tools, intelligence explains why in the wild only apes are known to make and use feeding tools routinely, and social tolerance explains variation across populations of chimpanzees and orangutans. We conclude that strong mutual tolerance was a key factor in the explosive increase in technology among hominids, probably intricately tied to a lifestyle involving food sharing and tool-based processing or the acquisition of large, shareable food packages.  相似文献   

19.
Social‐learner‐explorer (SE) is a learning strategy that combines accurate social learning with exploratory individual learning in that order. Arguably, it is one of the few plausible learning strategies that can support cumulative culture. We investigate numerically the factors that affect the evolution of SE in an environmentally heterogeneous two‐island model. Conditions favorable to the evolution of SE include a small exogenous cost of social learning, the occurrence of migration after social learning but before individual learning, the ability to adaptively modify the behavioral phenotype in the postmigration environment (asymmetrical individual learning), and a relatively high migration rate. The implications of our model for the evolution of SE in humans are discussed. Of particular interest is the prediction that behaviors affecting fitness would have to be socially learned in the natal environment and then subsequently modified by individual learning in the postmigration environment, suggesting a life‐cycle stage dependent reliance on the two types of learning.  相似文献   

20.
Human language is unique among the communication systems of the natural world. The vocabulary of human language is unique in being both culturally transmitted and symbolic. In this paper I present an investigation into the factors involved in the evolution of such vocabulary systems. I investigate both the cultural evolution of vocabulary systems and the biological evolution of learning rules for vocabulary acquisition. Firstly, vocabularies are shown to evolve on a cultural time-scale so as to fit the expectations of learners-a population's vocabulary adapts to the biases of the learners in that population. A learning bias in favour of one-to-one mappings between meanings and words leads to the cultural evolution of communicatively optimal vocabulary systems, even in the absence of any explicit pressure for communication. Furthermore, the pressure to conform to the biases of learners is shown to outweigh natural selection acting on cultural transmission. Human language learners appear to bring a one-to-one bias to the acquisition of vocabulary systems. The functionality of human vocabulary may therefore be a consequence of the biases of human language learners. Secondly, the evolutionary stability of genetically transmitted vocabulary learning biases is investigated using both static and dynamic models. A one-to-one learning bias, which leads to the cultural evolution of optimal communication, is shown to be evolutionarily stable. However, the evolution de novo of this bias is complicated by the cumulative nature of the cultural evolution of vocabulary systems. This suggests that the biases of human language learners may not have evolved specifically and exclusively for the acquisition of communicatively functional vocabulary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号