首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the broad adoption of multispecies coalescent (MSC) methods for nuclear phylogenomics, they have yet to be applied to mitochondrial (mt) genomic data. As the potential sources of phylogenomic bias that MSC methods can address, such as incomplete lineage sorting, horizontal gene transfer and gene tree heterogeneity, have been found in mt genomic data, these approaches may improve the accuracy of phylogenetic inference with these data. In the present study, we examined the behaviour of MSC methods in reconstructing the phylogeny of Lepidoptera (butterflies and moths), a group for which mt genomic data are known to have strong resolving power. Traditional concatenation methods of analysing mt genomes for Lepidoptera infer topologies highly congruent with those generated from independent nuclear datasets. Individual mt gene trees performed poorly in recovering consensus relationships at deep levels (i.e. superfamily monophyly and inter-relationships) and only moderately well for shallow relationships (i.e. within Papilionoidea). In contrast, MSC analyses with ASTRAL performed strongly with almost complete concordance to both concatenated mt genome analyses and independent nuclear analyses at both deep and shallow phylogenetic scales. Outgroup choice had a limited impact on tree accuracy, with even phylogenetically distant outgroups still resulting in topologies highly congruent with results from nuclear datasets, although MSC analyses appeared to be marginally more affected by outgroup choice than concatenation analyses. In general, discordance between concatenation and MSC analyses was found at nodes whose resolution varied between previous nuclear phylogenomic studies. The sensitivity of individual relationships to analysis with MSC vs concatenation can thus be used to test the robustness of phylogenetic hypotheses. For insect phylogenetics, MSC is a reliable inference method for mt genomic data and is thus a useful complement to the already widely used concatenation approaches.  相似文献   

2.
High‐throughput (next‐generation) DNA sequencing has removed barriers to data quantity and quality, and it has produced phylogenies with high statistical support. Such data are useful to address phylogenetic congruence among individual genes. Concatenated analyses of unlinked genes often produce well‐resolved phylogenetic trees with bootstrap support on major nodes at or approaching 100%, but they have been criticized for providing incorrect phylogenies for various reasons to include a history of hybridization, introgression, and incomplete lineage sorting. The present study compares next‐generation sequencing results of the same accessions of Daucus with different genomic regions, of which three have been reported before: (i) the entire plastid genome, (ii) 47 mitochondrial genes, and (iii) 94 conserved nuclear orthologs. Here, we report a fourth dataset, (iv) 564 895 nuclear SNPs. There are areas of discordance in all four results using the same accessions analyzed with maximum parsimony, maximum likelihood, and with the nuclear data species trees through a coalescent analysis. The nuclear results show significant areas of discordance that were unexpected, because these studies used the same DNA samples, the nuclear studies were generated from large and high‐quality datasets with the SNPs distributed on all nine linkage groups of Daucus carota, and the results were supported by high bootstrap values. These results raise questions concerning the best data and analytical methods to reconstruct and understand the “truth” of a phylogeny.  相似文献   

3.
Interest in methods that estimate speciation and extinction rates from molecular phylogenies has increased over the last decade. The application of such methods requires reliable estimates of tree topology and node ages, which are frequently obtained using standard phylogenetic inference combining concatenated loci and molecular dating. However, this practice disregards population‐level processes that generate gene tree/species tree discordance. We evaluated the impact of employing concatenation and coalescent‐based phylogeny inference in recovering the correct macroevolutionary regime using simulated data based on the well‐established diversification rate shift of delphinids in Cetacea. We found that under scenarios of strong incomplete lineage sorting, macroevolutionary analysis of phylogenies inferred by concatenating loci failed to recover the delphinid diversification shift, while the coalescent‐based tree consistently retrieved the correct rate regime. We suggest that ignoring microevolutionary processes reduces the power of methods that estimate macroevolutionary regimes from molecular data.  相似文献   

4.
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation.  相似文献   

5.
Evidence of incongruence between mitochondrial and nuclear gene trees is now becoming documented with increasing frequency. Among the Old World monkeys, this discordance has been well demonstrated in the Cercopithecinae, but has not yet been investigated in the Colobinae. The mitochondrial relationships between the colobine genera have recently been clarified and cluster Presbytis and Trachypithecus as sister taxa to the exclusion of Semnopithecus. This is incongruent with previous morphological hypotheses that suggest the latter two are sister taxa, and perhaps even congeneric. In addition to analyzing a previously published 10,896 bp mitochondrial dataset, we sequenced and analyzed a 4297 bp fragment of the X-chromosome in order to test the competing mitochondrial and morphological phylogenetic hypotheses. The results from the mitochondrial dataset again support a Presbytis+Trachypithecus group while the X-chromosomal dataset supported a Semnopithecus+Trachypithecus group. A Shimodaira-Hasegawa test performed on both datasets indicates that the mitochondrial and X-chromosomal trees are significantly better at explaining their respective datasets than alternative topologies (p<0.05). We suggest that differential lineage sorting or ancient hybridization may be the cause of this strong discordance between the mitochondrial and X-chromosomal markers in these taxa.  相似文献   

6.
Yu Y  Degnan JH  Nakhleh L 《PLoS genetics》2012,8(4):e1002660
Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa.  相似文献   

7.
Contemporary phylogenomic studies frequently incorporate two-step coalescent analyses wherein the first step is to infer individual-gene trees, generally using maximum-likelihood implemented in the popular programs PhyML or RAxML . Four concerns with this approach are that these programs only present a single fully resolved gene tree to the user despite potential for ambiguous support, insufficient phylogenetic signal to fully resolve each gene tree, inexact computer arithmetic affecting the reported likelihood of gene trees, and an exclusive focus on the most likely tree while ignoring trees that are only slightly suboptimal or within the error tolerance. Taken together, these four concerns are sufficient for RAxML and Phy ML users to be suspicious of the resulting (perhaps over-resolved) gene-tree topologies and (perhaps unjustifiably high) bootstrap support for individual clades. In this study, we sought to determine how frequently these concerns apply in practice to contemporary phylogenomic studies that use RAxML for gene-tree inference. We did so by re-analyzing 100 genes from each of ten studies that, taken together, are representative of many empirical phylogenomic studies. Our seven findings are as follows. First, the few search replicates that are frequently applied in phylogenomic studies are generally insufficient to find the optimal gene-tree topology. Second, there is often more topological variation among slightly suboptimal gene trees relative to the best-reported tree than can be safely ignored. Third, the Shimodaira–Hasegawa-like approximate likelihood ratio test is highly effective at identifying dubiously supported clades and outperforms the alternative approaches of relying on bootstrap support or collapsing minimum-length branches. Fourth, the bootstrap can, but rarely does, indicate high support for clades that are not supported amongst slightly suboptimal trees. Fifth, increasing the accuracy by which RA xML optimizes model-parameter values generally has a nominal effect on selection of optimal trees. Sixth, tree searches using the GTRCAT model were generally less effective at finding optimal known trees than those using the GTRGAMMA model. Seventh, choice of gene-tree sampling strategy can affect inferred coalescent branch lengths, species-tree topology and branch support.  相似文献   

8.
The systematics and speciation literature is rich with discussion relating to the potential for gene tree/species tree discordance. Numerous mechanisms have been proposed to generate discordance, including differential selection, long-branch attraction, gene duplication, genetic introgression, and/or incomplete lineage sorting. For speciose clades in which divergence has occurred recently and rapidly, recovering the true species tree can be particularly problematic due to incomplete lineage sorting. Unfortunately, the availability of multilocus or "phylogenomic" data sets does not simply solve the problem, particularly when the data are analyzed with standard concatenation techniques. In our study, we conduct a phylogenetic study for a nearly complete species sample of the dwarf and mouse lemur clade, Cheirogaleidae. Mouse lemurs (genus, Microcebus) have been intensively studied over the past decade for reasons relating to their high level of cryptic species diversity, and although there has been emerging consensus regarding the evolutionary diversity contained within the genus, there is no agreement as to the inter-specific relationships within the group. We attempt to resolve cheirogaleid phylogeny, focusing especially on the mouse lemurs, by employing a large multilocus data set. We compare the results of Bayesian concordance methods with those of standard gene concatenation, finding that though concatenation yields the strongest results as measured by statistical support, these results are found to be highly misleading. By employing an approach where individual alleles are treated as operational taxonomic units, we show that phylogenetic results are substantially influenced by the selection of alleles in the concatenation process.  相似文献   

9.
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study.In the past decade,a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era.In the meantime,a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent.This r...  相似文献   

10.
The application of phylogenetic inference methods, to data for a set of independent genes sampled randomly throughout the genome, often results in substantial incongruence in the single-gene phylogenetic estimates. Among the processes known to produce discord between single-gene phylogenies, two of the best studied in a phylogenetic context are hybridization and incomplete lineage sorting. Much recent attention has focused on the development of methods for estimating species phylogenies in the presence of incomplete lineage sorting, but phylogenetic models that allow for hybridization have been more limited. Here we propose a model that allows incongruence in single-gene phylogenies to be due to both hybridization and incomplete lineage sorting, with the goal of determining the contribution of hybridization to observed gene tree incongruence in the presence of incomplete lineage sorting. Using our model, we propose methods for estimating the extent of the role of hybridization in both a likelihood and a Bayesian framework. The performance of our methods is examined using both simulated and empirical data.  相似文献   

11.
In recent years, the emphasis of theoretical work on phylogenetic inference has shifted from the development of new tree inference methods to the development of methods to measure the statistical support for the topologies. This paper reviews 3 approaches to assign support values to branches in trees obtained in the analysis of molecular sequences: the bootstrap, the Bayesian posterior probabilities for clades, and the interior branch tests. In some circumstances, these methods give different answers. It should not be surprising: their assumptions are different. Thus the interior branch tests assume that a given topology is true and only consider if a particular branch length is longer than zero. If a tree is incorrect, a wrong branch (a low bootstrap or Bayesian support may be an indication) may have a non-zero length. If the substitution model is oversimplified, the length of a branch may be overestimated, and the Bayesian support for the branch may be inflated. The bootstrap, on the other hand, approximates the variance of the data under the real model of sequence evolution, because it involves direct resampling from this data. Thus the discrepancy between the Bayesian support and the bootstrap support may signal model inaccuracy. In practical application, use of all 3 methods is recommended, and if discrepancies are observed, then a careful analysis of their potential origins should be made.  相似文献   

12.
Lineages undergoing rapid radiations provide exceptional opportunities for studying speciation and adaptation, but also represent a challenge for molecular systematics because retention of ancestral polymorphisms and the occurrence of hybridization can obscure relationships among lineages. Dolphins in the subfamily Delphininae are one such case. Non-monophyly, rapid speciation events, and discordance between morphological and molecular characters have made the inference of phylogenetic relationships within this subfamily very difficult. Here we approach this problem by applying multiple methods intended to estimate species trees using a multi-gene dataset for the Delphininae (Sousa, Sotalia, Stenella, Tursiops, Delphinus and Lagenodelphis). Incongruent gene trees obtained indicate that incomplete lineage sorting and possibly hybridization are confounding the inference of species history in this group. Nonetheless, using coalescent-based methods, we have been able to extract an underlying species-tree signal from divergent histories of independent genes. This is the first time a molecular study provides support for such relationships. This study further illustrates how methods of species-tree inference can be very sensitive both to the characteristics of the dataset and the evolutionary processes affecting the evolution of the group under study.  相似文献   

13.
Lineage sorting has been suggested as a major force in generating incongruent phylogenetic signal when multiple gene partitions are examined. The degree of lineage sorting can be estimated using the coalescent process and simulation studies have also pointed to a major role for incomplete lineage sorting as a factor in phylogenetic inference. Some recent empirical studies point to an extreme role for this phenomenon with up to 50-60% of all informative genes showing incongruence as a result of lineage sorting. Here, we examine seven large multi-partition genome level data sets over a large range of taxonomic representation. We took the approach of examining outgroup choice and its impact on tree topology, by swapping outgroups into analyses with successively larger genetics distances to the ingroup. Our results indicate a linear relationship of outgroup distance with incongruence in the data sets we examined suggesting a strong random rooting effect. In addition, we attempted to estimate the degree of lineage sorting in several large genome level data sets by examining triads of very closely related taxa. This exercise resulted in much lower estimates of incongruent genes that could be the result of lineage sorting, with an overall estimate of around 10% of the total number of genes in a genome showing incongruence as a result of true lineage sorting. Finally we examined the behavior of likelihood and parsimony approaches on the random rooting phenomenon. Likelihood tends to stabilize incongruence as outgroups get further and further away from the ingroup. In one extreme case, likelihood overcompensates for sequence divergence but increases random rooting causing long branch repulsion.  相似文献   

14.
ABSTRACT: BACKGROUND: Through next-generation sequencing, the amount of sequence data potentially available for phylogenetic analyses has increased exponentially in recent years. Simultaneously, the risk of incorporating 'noisy' data with misleading phylogenetic signal has also increased, and may disproportionately influence the topology of weakly supported nodes and lineages featuring rapid radiations and/or elevated rates of evolution. RESULTS: We investigated the influence of phylogenetic noise in large data sets by applying two fundamental strategies, variable site removal and long-branch exclusion, to the phylogenetic analysis of a full plastome alignment of 107 species of Pinus and six Pinaceae outgroups. While high overall phylogenetic resolution resulted from inclusion of all data, three historically recalcitrant nodes remained conflicted with previous analyses. Close investigation of these nodes revealed dramatically different responses to data removal. Whereas topological resolution and bootstrap support for two clades peaked with removal of highly variable sites, the third clade resolved most strongly when all sites were included. Similar trends were observed using long-branch exclusion, but patterns were neither as strong nor as clear. When compared to previous phylogenetic analyses of nuclear loci and morphological data, the most highly supported topologies seen in Pinus plastome analysis are congruent for the two clades gaining support from variable site removal and long-branch exclusion, but in conflict for the clade with highest support from the full data set. CONCLUSIONS: These results suggest that removal of misleading signal in phylogenomic datasets can result not only in increased resolution for poorly supported nodes, but may serve as a tool for identifying erroneous yet highly supported topologies. For Pinus chloroplast genomes, removal of variable sites appears to be more effective than long-branch exclusion for clarifying phylogenetic hypotheses.  相似文献   

15.
An analysis of the relationship between the number of loci utilized in an electrophoretic study of genetic relationships and the statistical support for the topology of UPGMA trees is reported for two published data sets. These are Highton and Larson (Syst. Zool.28: 579-599, 1979), an analysis of the relationships of 28 species of plethodonine salamanders, and Hedges (Syst. Zool., 35: 1-21, 1986), a similar study of 30 taxa of Holarctic hylid frogs. As the number of loci increases, the statistical support for the topology at each node in UPGMA trees was determined by both the bootstrap and jackknife methods. The results show that the bootstrap and jackknife probabilities supporting the topology at some nodes of UPGMA trees increase as the number of loci utilized in a study is increased, as expected for nodes that have groupings that reflect phylogenetic relationships. The pattern of increase varies and is especially rapid in the case of groups with no close relatives. At nodes that likely do not represent correct phylogenetic relationships, the bootstrap probabilities do not increase and often decline with the addition of more loci.  相似文献   

16.
It is now well known that incomplete lineage sorting can cause serious difficulties for phylogenetic inference, but little attention has been paid to methods that attempt to overcome these difficulties by explicitly considering the processes that produce them. Here we explore approaches to phylogenetic inference designed to consider retention and sorting of ancestral polymorphism. We examine how the reconstructability of a species (or population) phylogeny is affected by (a) the number of loci used to estimate the phylogeny and (b) the number of individuals sampled per species. Even in difficult cases with considerable incomplete lineage sorting (times between divergences less than 1 N(e) generations), we found the reconstructed species trees matched the "true" species trees in at least three out of five partitions, as long as a reasonable number of individuals per species were sampled. We also studied the tradeoff between sampling more loci versus more individuals. Although increasing the number of loci gives more accurate trees for a given sampling effort with deeper species trees (e.g., total depth of 10 N(e) generations), sampling more individuals often gives better results than sampling more loci with shallower species trees (e.g., depth = 1 N(e)). Taken together, these results demonstrate that gene sequences retain enough signal to achieve an accurate estimate of phylogeny despite widespread incomplete lineage sorting. Continued improvement in our methods to reconstruct phylogeny near the species level will require a shift to a compound model that considers not only nucleotide or character state substitutions, but also the population genetics processes of lineage sorting. [Coalescence; divergence; population; speciation.].  相似文献   

17.
In the context of exponential growing molecular databases, it becomes increasingly easy to assemble large multigene data sets for phylogenomic studies. The expected increase of resolution due to the reduction of the sampling (stochastic) error is becoming a reality. However, the impact of systematic biases will also become more apparent or even dominant. We have chosen to study the case of the long-branch attraction artefact (LBA) using real instead of simulated sequences. Two fast-evolving eukaryotic lineages, whose evolutionary positions are well established, microsporidia and the nucleomorph of cryptophytes, were chosen as model species. A large data set was assembled (44 species, 133 genes, and 24,294 amino acid positions) and the resulting rooted eukaryotic phylogeny (using a distant archaeal outgroup) is positively misled by an LBA artefact despite the use of a maximum likelihood-based tree reconstruction method with a complex model of sequence evolution. When the fastest evolving proteins from the fast lineages are progressively removed (up to 90%), the bootstrap support for the apparently artefactual basal placement decreases to virtually 0%, and conversely only the expected placement, among all the possible locations of the fast-evolving species, receives increasing support that eventually converges to 100%. The percentage of removal of the fastest evolving proteins constitutes a reliable estimate of the sensitivity of phylogenetic inference to LBA. This protocol confirms that both a rich species sampling (especially the presence of a species that is closely related to the fast-evolving lineage) and a probabilistic method with a complex model are important to overcome the LBA artefact. Finally, we observed that phylogenetic inference methods perform strikingly better with simulated as opposed to real data, and suggest that testing the reliability of phylogenetic inference methods with simulated data leads to overconfidence in their performance. Although phylogenomic studies can be affected by systematic biases, the possibility of discarding a large amount of data containing most of the nonphylogenetic signal allows recovering a phylogeny that is less affected by systematic biases, while maintaining a high statistical support.  相似文献   

18.
With the continued adoption of genome‐scale data in evolutionary biology comes the challenge of adequately harnessing the information to make accurate phylogenetic inferences. Coalescent‐based methods of species tree inference have become common, and concatenation has been shown in simulation to perform well, particularly when levels of incomplete lineage sorting are low. However, simulation conditions are often overly simplistic, leaving empiricists with uncertainty regarding analytical tools. We use a large ultraconserved element data set (>3,000 loci) from rattlesnakes of the Crotalus triseriatus group to delimit lineages and estimate species trees using concatenation and several coalescent‐based methods. Unpartitioned and partitioned maximum likelihood and Bayesian analysis of the concatenated matrix yield a topology identical to coalescent analysis of a subset of the data in bpp . ASTRAL analysis on a subset of the more variable loci also results in a tree consistent with concatenation and bpp , whereas the SVDquartets phylogeny differs at additional nodes. The size of the concatenated matrix has a strong effect on species tree inference using SVDquartets , warranting additional investigation on optimal data characteristics for this method. Species delimitation analyses suggest up to 16 unique lineages may be present within the C. triseriatus group, with divergences occurring during the Neogene and Quaternary. Network analyses suggest hybridization within the group is relatively rare. Altogether, our results reaffirm the Mexican highlands as a biodiversity hotspot and suggest that coalescent‐based species tree inference on data subsets can provide a strongly supported species tree consistent with concatenation of all loci with a large amount of missing data.  相似文献   

19.
20.
Elongation factor 1 alpha (EF-1 alpha) is a highly conserved ubiquitous protein involved in translation that has been suggested to have desirable properties for phylogenetic inference. To examine the utility of EF-1 alpha as a phylogenetic marker for eukaryotes, we studied three properties of EF-1 alpha trees: congruency with other phyogenetic markers, the impact of species sampling, and the degree of substitutional saturation occurring between taxa. Our analyses indicate that the EF-1 alpha tree is congruent with some other molecular phylogenies in identifying both the deepest branches and some recent relationships in the eukaryotic line of descent. However, the topology of the intermediate portion of the EF-1 alpha tree, occupied by most of the protist lineages, differs for different phylogenetic methods, and bootstrap values for branches are low. Most problematic in this region is the failure of all phylogenetic methods to resolve the monophyly of two higher-order protistan taxa, the Ciliophora and the Alveolata. JACKMONO analyses indicated that the impact of species sampling on bootstrap support for most internal nodes of the eukaryotic EF-1 alpha tree is extreme. Furthermore, a comparison of observed versus inferred numbers of substitutions indicates that multiple overlapping substitutions have occurred, especially on the branch separating the Eukaryota from the Archaebacteria, suggesting that the rooting of the eukaryotic tree on the diplomonad lineage should be treated with caution. Overall, these results suggest that the phylogenies obtained from EF-1 alpha are congruent with other molecular phylogenies in recovering the monophyly of groups such as the Metazoa, Fungi, Magnoliophyta, and Euglenozoa. However, the interrelationships between these and other protist lineages are not well resolved. This lack of resolution may result from the combined effects of poor taxonomic sampling, relatively few informative positions, large numbers of overlapping substitutions that obscure phylogenetic signal, and lineage-specific rate increases in the EF-1 alpha data set. It is also consistent with the nearly simultaneous diversification of major eukaryotic lineages implied by the "big-bang" hypothesis of eukaryote evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号