首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinic acid (NA) has been used as a lipid drug for five decades. The lipid-lowering effects of NA are attributed to its ability to suppress lipolysis in adipocytes and lower plasma FFA levels. However, plasma FFA levels often rebound during NA treatment, offsetting some of the lipid-lowering effects of NA and/or causing insulin resistance, but the underlying mechanisms are unclear. The present study was designed to determine whether a prolonged, continuous NA infusion in rats produces a FFA rebound and/or insulin resistance. NA infusion rapidly lowered plasma FFA levels (>60%, P < 0.01), and this effect was maintained for ≥5 h. However, when this infusion was extended to 24 h, plasma FFA levels rebounded to the levels of saline-infused control rats. This was not due to a downregulation of NA action, because when the NA infusion was stopped, plasma FFA levels rapidly increased more than twofold (P < 0.01), indicating that basal lipolysis was increased. Microarray analysis revealed many changes in gene expression in adipose tissue, which would contribute to the increase in basal lipolysis. In particular, phosphodiesterase-3B gene expression decreased significantly, which would increase cAMP levels and thus lipolysis. Hyperinsulinemic glucose clamps showed that insulin's action on glucose metabolism was improved during 24-h NA infusion but became impaired with increased plasma FFA levels after cessation of NA infusion. In conclusion, a 24-h continuous NA infusion in rats resulted in an FFA rebound, which appeared to be due to altered gene expression and increased basal lipolysis in adipose tissue. In addition, our data support a previous suggestion that insulin resistance develops as a result of FFA rebound during NA treatment. Thus, the present study provides an animal model and potential molecular mechanisms of FFA rebound and insulin resistance, observed in clinical studies with chronic NA treatment.  相似文献   

2.
Adipose tissue lipolysis and fatty acid reesterification by liver and adipose tissue were investigated in rats fasted for 15 h under basal and calorigenic conditions. The fatty acid flux initiated by adipose fat lipolysis in the fasted rat is mostly futile and is characterized by reesterification of 57% of lipolyzed free fatty acid (FFA) back into adipose triglycerides (TG). About two-thirds of FFA reesterification are carried out before FFA release into plasma, whereas the rest consists of plasma FFA extracted by adipose tissue. Thirty-six percent of the fasting lipolytic flux is accounted for by oxidation of plasma FFA, whereas only a minor fraction is channeled into hepatic very low density lipoprotein-triglycerides (VLDL-TG). Total body calorigenesis induced by thyroid hormone treatment and liver-specific calorigenesis induced by treatment with beta, beta'-tetramethylhexadecanedioic acid (Medica 16) are characterized by a 1.7- and 1.3-fold increase in FFA oxidation, respectively, maintained by a 1.5-fold increase in adipose fat lipolysis. Hepatic reesterification of plasma FFA into VLDL-TG is negligible under both calorigenic conditions. Hence, total body fatty acid metabolism is regulated by adipose tissue as both source and sink. The futile nature of fatty acid cycling allows for its fine tuning in response to metabolic demands.  相似文献   

3.
The effect of physiologic elevations of plasma hydroxybutyrate induced by the infusion of sodium D,L-beta-hydroxybutyrate (15 mumol X kg-1 X min-1) on carbohydrate metabolism was examined with the euglycemic insulin clamp technique in nine healthy volunteers. Plasma insulin concentration was acutely raised and maintained at 126 +/- 6 microU/ml and plasma glucose was held constant at the fasting level by a variable glucose infusion. Glucose uptake of 6.53 +/- 0.80 mg X kg-1 X min-1 was unchanged by hyperketonemia when compared with an intraindividual control study using saline instead of beta-OH-butyrate infusion (6.26 +/- 0.59 mg X kg-1 X min-1). In studies, in which the degree of metabolic alkalosis accompanying butyrate infusion was mimicked by the continuous administration of bicarbonate, glucose uptake was also unaffected (6.25 +/- 0.45 mg X kg-1 X min-1). Furthermore, hyperketonemia had no effect on basal glucose production or the suppression of hepatic glucose production following hyperinsulinemia. It is concluded that moderate elevations in plasma beta-hydroxy-butyrate do not alter hepatic or peripheral glucose metabolism.  相似文献   

4.
Vascular effects of neuropeptide Y (NPY) and noradrenaline (NA) were studied in six human volunteers. Systemic infusion of human NPY for 40 min (5 pmol X kg-1 X min-1) increased arterial plasma NPY-like immunoreactivity (NPY-LI) from 12 +/- 2 to 356 +/- 30 pM. This concentration caused no systemic cardiovascular effects. The disappearance curve for NPY-LI was biphasic; the slopes of the two phases corresponding to half lives of 4.1 +/- 0.4 and 20 +/- 2 min respectively. Close i.a. infusion of human NPY in the forearm caused a slowly developing and dose dependent decrease in forearm blood flow (FBF) and increase in venous tone with maximal values of 44 +/- 6 and 235 +/- 81% of control respectively at 5 nmol X min-1. The corresponding values for NA (5 nmol X min-1) were 21 +/- 9 and 489 +/- 78% of control. A threshold concentration for a decrease in FBF was obtained at a plasma NPY-LI of 3.7 +/- 0.6 nM. The decrease in FBF caused by NPY was maintained for a much longer period compared to that of NA.  相似文献   

5.
In 28 6-h experiments on 10 conscious resting trained male dogs, plasma growth hormone (GH) was determined at 5-min intervals by radioimmunoassay. For all experiments, the basal GH concentration in plasma was 0.80 +/- 0.06 ng mL-1. In each experiment, 1-3 secretory bursts of GH occurred, raising plasma GH 2.4 to 15.3 times basal concentrations (for all 43 bursts, 6.6 +/- 0.4 times the basal value). Metabolic clearance rates (MCR) and apparent distribution volumes (V) were determined, using stepwise infusions of canine GH. The MCR (3.99 +/- 0.30 mL kg-1 min-1) and V (57.9 +/- 5.5 mL kg-1) were used to transform the GH concentration versus time data into GH secretion rates, using a single compartment approach. Basal GH secretion rates for all 28 experiments were 3.12 +/- 0.24 ng kg-1 min-1. The secretory bursts yield peak GH secretion rates of 9.4 +/- 0.8 times basal secretion and these steep-sloped bursts last 25.1 +/- 1.2 min. Six-hour infusions of 0.15 microgram kg-1 min-1 of somatostatin (SRIF) abolished all secretory bursts but did not lower basal secretion rates. In five of seven SRIF infusion experiments in which samples were taken after the infusion ceased a secretory burst was seen in the hour following cessation of infusion (in four cases within 10 min). These secretory bursts lasted 23.0 +/- 2.9 min and were similar to those seen in control experiments. Infusions of SRIF at 0.05 microgram kg-1 min-1 had no effect. These results imply that during basal GH secretion, a surfeit of SRIF impinges on the somatotrophs, as extra SRIF does not further lower basal secretion. However, during secretory bursts, very little SRIF must be present, as exogenous SRIF blocks these bursts. The bursts are similar in duration to overshoots provoked in perifused dispersed rat somatotrophs by removal of an SRIF signal. It seems likely that their cause in vivo is similar. (All values are means +/- SEM.)  相似文献   

6.
Chronically elevated plasma norepinephrine has the potential for supporting function of diseased hearts, yet may also initiate harmful biochemical and (or) structural changes in the myocardium. The present study investigated the dosage-related effects of chronic norepinephrine infusion on markers of myocardial damage and then tested the influence of a relatively low norepinephrine infusion rate (0.05 microgram X kg-1 X min-1) on the heart's adaptation to pressure overload in aortic constricted rats. Norepinephrine infusion at 0.50 microgram X kg-1 X min-1 led to significantly increased myocardial hydroxyproline concentration and significant mortality. A rate of 0.25 microgram X kg-1 X min-1 increased myocardial hydroxyproline concentration and mortality in aortic constricted rats but had no such effects on sham-operated rats. The lowest rate tested (0.05 microgram X kg-1 X min-1) significantly increased mean arterial pressure and lung weight of aortic constricted rats, without affecting the degree of left ventricular hypertrophy. This infusion rate and aortic constriction each increased plasma norepinephrine and impaired cardiac performance during rapid preloading, although their combination did not cause further impairment. Thus, it appears that even modest plasma norepinephrine elevation has a negative effect on the heart's adaptation to sustained pressure overload.  相似文献   

7.
In anaesthetized rats kept on normal diet an i.v. infusion of NAD (200 nmole X kg-1 X X min-1) induced a decrease in renal plasma flow (CPAH), glomerular filtration rate (GFR) and electrolyte excretion accompanied by an increase in plasma adenosine concentration. Separate infusions of a small dose of NAD (50 nmole X kg-1 X min-1) or dipyridamole (25 micrograms X kg-1 X min-1) did not affect renal function or plasma adenosine concentration. However, when the above small doses of both agents were given simultaneously, GFR, CPAH and electrolyte excretion fell significantly, indicating potentiation of NAD action by dipyridamole, associated with increased plasma adenosine level. An i.v. infusion of furosemide failed to abolish the depression of renal function in response to NAD. The data suggest that the causal factor of this depression was adenosine and not NAD itself.  相似文献   

8.
In adult male rats anaesthetized with pentobarbital the intravenous infusion of 0.5 micrograms.kg-1.min-1 of epinephrine increased liver phosphorylase a activity within 5 min, whereas later a weakening of the hormone effect was observed. After increasing the infusion rate to 1.0 micrograms.kg-1.min-1 and extending the study to more parameters, the diminishing effect on phosphorylase was confirmed and a similar response was established for liver cAMP. Concomitantly, a decrease and recovery of liver glycogen synthase a activity was observed. In rats with permanent catheters in one of their tail arteries for obtaining blood samples, the plasma epinephrine levels were shown to be permanently increased (from cca 1 pmol.ml-1 before infusion of 1.0 micrograms.kg-1.min-1 to more than 30 pmol.ml-1 during infusion) and remained at steady levels throughout the infusion. Therefore, the weakening of the epinephrine effect should be ascribed to changes at (or beyond) the catecholamine receptor level. A hitherto undescribed decrease of total glycogen synthase activity was observed during the infusions.  相似文献   

9.
Starvation and experimental diabetes induce a stable increase in pyruvate dehydrogenase kinase (PDK) activity in skeletal muscle, which is largely due to a selective upregulation of PDK-4 expression. Increased free fatty acid (FFA) level has been suggested to be responsible for the upregulation. Because these metabolic states are also characterized by insulin deficiency, the present study was designed to examine whether insulin has a significant effect to regulate PDK mRNA expression in rat skeletal muscle. In study 1, overnight-fasted rats received an infusion of saline or insulin for 5 h (n = 6 each). During the insulin infusion, plasma glucose was clamped at basal levels (euglycemic hyperinsulinemic clamp). A third group (n = 6) received Intralipid infusion during the clamp to prevent a fall in plasma FFA. PDK-2 mRNA level in gastrocnemius muscle was not altered by insulin or FFA (i.e., Intralipid infusion). In contrast, PDK-4 mRNA level was decreased 72% by insulin (P < 0.05), and Intralipid infusion prevented only 20% of the decrease. PDK-4 protein level was decreased approximately 20% by insulin (P < 0.05), but this effect was not altered by Intralipid infusion. In study 2, overnight-fasted rats were refed or received an infusion of saline or nicotinic acid (NA, 30 micromol/h) for 5 h (n = 5 each). During the refeeding and NA infusion, plasma FFA levels were similarly (i.e., 60-70% vs. saline control) lowered. Muscle PDK-4 mRNA level decreased 77% after the refeeding (P < 0.05) but not after the NA infusion. In conclusion, the present data indicate that insulin had a profound effect to suppress PDK-4 expression in skeletal muscle and that, contrary to previous suggestions, circulating FFA had little impact on PDK-4 mRNA expression, at least within 5 h.  相似文献   

10.
Mean arterial pressure (mmHg (1 mmHg = 133.322 Pa)), sodium excretion rate (mumol.kg-1.min-1), and urine flow (microL.kg-1.min-1) were measured in conscious unrestrained spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) before, during, and after a 3-h intravenous infusion of arginine vasopressin (20 ng.kg-1.min-1), an equipressor dose of phenylephrine, or an infusion of the vehicle. Cessation of the phenylephrine infusion was associated with a return of arterial pressure to preinfusion control values in both SHR and WKY. Cessation of the vasopressin infusion was also associated with a return of arterial pressure to preinfusion values in WKY. In contrast, in the SHR, arterial pressure fell from a preinfusion control level of 164 +/- 6.2 to 137 +/- 4 mmHg within 1 h of stopping the vasopressin infusion. Five hours after stopping the infusion, pressure was 134 +/- 3 mmHg (29 +/- 5 mmHg below preinfusion levels). Similar to the WKY, cessation of a vasopressin infusion was associated with a return of arterial pressure to preinfusion values in Sprague-Dawley rats. Thus, the failure to observe a hypotensive response in normotensive rats was not a peculiarity of the WKY strain. Sodium excretion rates increased during the infusions of vasopressin to a greater extent in SHR than in WKY. However, the natriuresis induced by phenylephrine was not significantly different from that generated by vasopressin in SHR, and in WKY, the natriuresis was greater for phenylephrine than for vasopressin. Urine output increased to a greater extent during the infusions of phenylephrine in both SHR and WKY than during vasopressin infusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Norepinephrine (NE) was infused in four normal men in doses of 1.5, 6.0 and 9.0 microgram/min for 60 min. The rise in plasma NE was observed only after 5 min and steady state plasma NE and infusion rates. The calculated turnover time averaged 35 sec for 1.5 microgram/min infusion and 20 sec for both 6.0 and 9.0 microgram/min infusion experiments. These differences may be explained by adjustments occurring in inactivation processes in relation to infused doses. A basal endogenous overflow rate of 15 ng kg-1 min-1 was calculated for NE. In the month following NE infusion plasma concentrations decreased exponentially but remained above preinfusion values during about 10 days. The above results confirm the important role of inactivation mechanisms to remove NE from plasma and show that the amine taken up by sympathetic neurons may be released over a long period following the end of infusion.  相似文献   

12.
Glucose infusion attenuates fatigue in rat plantaris muscle stimulated in situ, and this is associated with a better maintenance of electrical properties of the fiber membrane (Karelis AD, Péronnet F, and Gardiner PF. Exp Physiol 87: 585-592, 2002). The purpose of the present study was to test the hypothesis that elevated plasma insulin concentration due to glucose infusion ( approximately 900 pmol/l), rather than high plasma glucose concentration ( approximately 10-11 mmol/l), could be responsible for this phenomenon, because insulin has been shown to stimulate the Na+-K+ pump. The plantaris muscle was indirectly stimulated (50 Hz, for 200 ms, 5 V, every 2.7 s) via the sciatic nerve to perform concentric contractions for 60 min, while insulin (8 mU x kg-1x min-1: plasma insulin approximately 900 pmol/l) and glucose were infused to maintain plasma glucose concentration between 4 and 6 [6.2 +/- 0.4 mg x kg-1x min-1: hyperinsulinemic-euglycemic (HE)] or 10 and 12 mmol/l [21.7 +/- 1.1 mg. kg-1. min-1: hyperinsulinemic-hyperglycemic clamps (HH)] (6 rats/group). The reduction in submaximal dynamic force was significantly (P < 0.05) less with HH (-53%) than with HE and saline only (-66 and -70%, respectively). M-wave characteristics were also better maintained in the HH than in HE and control groups. These results demonstrate that the increase in insulin concentration is not responsible for the increase in muscle performance observed after the elevation of circulating glucose.  相似文献   

13.
Intravenous infusions of ammonium chloride (62.3 mumol.kg-1.min-1) for 30 min caused a significant increase in blood glucose, lactate, pyruvate and free fatty acid (FFA) levels. A similar effect was also observed during infusion of adrenaline. Propanolol--a beta-receptor blocking agent--completely prevented the rise of blood pyruvate and lactate after adrenaline when 8.3 microgram.kg-1.min-1 of propranolol were infused, but not after NH4Cl administration. Lipolytic actions of adrenaline were completely prevented but that of NH4Cl was only significantly diminished by blockade of beta-receptors with propranolol. It was concluded that the influence of ammonium ions on blood lactate and pyruvate and FFA was not entirely mediated by adrenaline.  相似文献   

14.
Sixteen newly diagnosed non insulin dependent diabetic patients were treated for 3 months with an individual energy restricted diet. The effect on weight, hyperglycaemia and insulin response to oral glucose was measured in all subjects, and in 7, peripheral insulin resistance was estimated using a hyperinsulinaemic glucose clamp at two insulin infusion rates (40 and 400 mU m-2 X min-1). After diet, fasting plasma glucose fell from 12.0 +/- 0.7 mmol/l (mean +/- SEM) to 7.4 +/- 0.5 mmol/l (P less than 0.001) and weight fell from 92.9 +/- 4.2 kg to 85.0 +/- 3.1 kg (P less than 0.001). The plasma insulin response to oral glucose was unchanged after diet therapy. Insulin induced glucose disposal (M) was also unaffected by diet at insulin infusion rates of 40 mU m-2 X min-1 (12.5 +/- 1.5 mumol X kg-1 X min-1 vs 15.7 +/- 1.6 mumol X kg-1 X min-1) and 400 mU m-2 X min-1 (49.5 +/- 2.7 mumol X kg-1 X min-1 vs 55.1 +/- 2.5 mumol X kg-1 X min-1). These results show that 3 months reduction of energy consumption with weight loss in newly diagnosed non insulin dependent diabetics improves B-cell responsiveness to glucose but has no effect on liver glucose output or on peripheral insulin action.  相似文献   

15.
The pharmacokinetics and organ catabolism of cholecystokinin octapeptide (CCK8) were studied in pigs. In conscious animals, intravenous infusion of increasing doses of CCK8 (2.9-232.3 pmol.kg-1.min-1) resulted in a linear increase of plasma CCK-like immunoreactivity (CCK-LI). At the cessation of infusion of the largest dose of CCK8, plasma CCK-LI promptly returned to near basal values. The half-disappearance time (t1/2), metabolic clearance rate (MCR) and distribution volume (DV) were estimated to be 0.55 +/- 0.03 min, 134.8 +/- 10.8 ml.kg-1.min-1 and 107.9 +/- 13.0 ml.kg-1, respectively. In another group of anesthetized animals, infusion of CCK8 at similar doses produced higher plateau plasma CCK levels and the t1/2, MCR and DV were calculated to be 0.68 +/- 0.06 min, 32.5 +/- 3.9 ml.kg-1.min-1 and 45.2 +/- 5.6 ml.kg-1, respectively. Estimates of first-pass immunological degradation through various vascular beds were in the range 27-66%, with in decreasing order the kidney, liver, hindleg, followed by the brain and gut. These results indicate that immunoreactive CCK8 is rapidly cleared from plasma during passage through several vascular beds. The peptide is only partly inactivated during hepatic transit and so may exert hormonal effects upon its release from intestinal stores.  相似文献   

16.
The effect of hyperglycaemia on hepatic glucose production (Ra) was investigated in nine healthy men using sequential clamp protocols during somatostatin infusion and euglycaemia (0-150 min), at plasma glucose levels of 165 mg x dl-1 (9.2 mM, 150-270 min) and during insulin infusion (1.0 mU x kg-1 x min-1, 270-360 min) in study 1 or during hypo-insulinaemia and plasma glucose levels of 220 mg x dl-1 (12.2 mM; 270-390 min) in study 2. Somatostatin decreased Ra and glucose disposal rate (Rd) but increased plasma free fatty acids (FFA) and lipid oxidation during euglycaemia. Increasing plasma glucose to 165 mg x dl-1 (9.2 mM) and hypo-insulinaemia increased Rd, but no suppressive effects on Ra, plasma FFA and lipid oxidation were observed. By contrast hyperinsulinaemia (study 1), as well as a further increase in plasma glucose (study 2), both decreased Ra. However, more pronounced hyperglycaemia increased insulin secretion despite somatostatin resulting in a fall in plasma FFA and lipid oxidation. Our data questions the accepted dogma that hyperglycaemia inhibits Ra independently of insulin action.  相似文献   

17.
We examined the effects of acute and chronic treatments with naloxone on release of vasopressin and oxytocin from the hypothalamoneurohypophyseal system (HNS) in conscious, chronically instrumented Long-Evans rats. Plasma concentrations of vasopressin-associated neurophysin and oxytocin-associated neurophysin were evaluated before and during an intravenous infusion of 18% saline at 100 microL.kg-1 body weight.min-1 for 60 min. Acute treatment with naloxone (2.75 mumol/kg, intravenous) did not measurably alter basal plasma osmolality or vasopressin-associated neurophysin concentration, but it caused a three-fold rise in basal plasma oxytocin-associated neurophysin concentration (16 +/- 2 to 46 +/- 3 fmol/mL, p less than 0.005). Chronic treatment with naloxone (13.75 mumol/day, subcutaneous pellets) increased plasma osmolality (292 +/- 1 to 300 +/- 2 mosmol/kg H2O, p less than 0.01) by day 5, but it had no measurable effects on basal vasopressin- or oxytocin-associated neurophysin concentration. There were also no significant differences in plasma sodium concentration (144.8 +/- 1.1 vs. 142.2 +/- 1.4 mequiv./L) under both conditions. Acute and chronic treatments with naloxone accompanied by salt loading produced a five- and four-fold decrease in the rates that plasma concentration of vasopressin-associated neurophysin changed with plasma osmolality, compared with untreated salt-loaded control rats. For oxytocin secretion from the HNS, both treatments accompanied by salt loading substantially decreased the threshold for changes in relation to plasma osmolality; the rise in plasma concentration of oxytocin-associated neurophysin was similar at all levels of hyperosmotic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Gluconeogenic pathway in liver and muscle glycogen synthesis after exercise   总被引:1,自引:0,他引:1  
To determine whether prior exercise affects the pathways of liver and muscle glycogen synthesis, rested and postexercised rats fasted for 24 h were infused with glucose (200 mumol.min-1.kg-1 iv) containing [6-3H]glucose. Hyperglycemia was exaggerated in postexercised rats, but blood lactate levels were lower than in nonexercised rats. The percent of hepatic glycogen synthesized from the indirect pathway (via gluconeogenesis) did not differ between exercised (39%) and nonexercised (36%) rats. In red muscle, glycogen was synthesized entirely by the direct pathway (uptake and phosphorylation of plasma glucose) in both groups. However, only approximately 50% of glycogen was formed via the direct pathway in white muscle of exercised and nonexercised rats. Therefore prior exercise did not alter the pathways of tissue glycogen synthesis. To further study the incorporation of gluconeogenic precursors into muscle glycogen, exercised rats were infused with either saline, lactate (100 mumol.min-1.kg-1), or glucose (200 mumol.min-1.kg-1), containing [6-3H]glucose and [14C(U)]lactate. Plasma glucose was elevated one- to twofold and three- to fourfold by lactate and glucose infusion, respectively. Plasma lactate levels were elevated by about threefold during both glucose and lactate infusion. Glycogen was partially synthesized via an indirect pathway in white muscle and liver of glucose- or lactate-infused rats but not in saline-infused animals. Thus participation of an indirect pathway in white skeletal muscle glycogen synthesis required prolonged elevation of plasma lactate levels produced by nutritive support.  相似文献   

19.
To determine whether rats could adapt to a chronic exogenous supply of adrenaline by a decrease in the well-known inhibitory effect of adrenaline on insulin secretion, plasma glucose and insulin levels were measured in unanesthetized control and adrenaline-treated rats (300 mug/kg twice a day for 28 days) during an adrenaline infusion (0.75 mug kg-1 min-1), after an acute glucose load (0.5 g/kg), and during the simultaneous administration of both agents. Chronic treatment with adrenaline did not modify the initial glucose levels but it greatly diminished the basal insulin values (21.57+/-2.48 vs. 44.69+/-3.3muU/ml, p less than 0.01). In the control rats, despite the elevated glucose concentrations, a significant drop in plasma insulin levels was observed within the first 15 min of adrenaline infusion, followed by a period of recovery. In the adrenaline-treated group, in which plasma glucose levels were lower than in control animals, plasma insulin levels did not drop as in control rats, but a significant increase was found after 30 min of infusion. During the intravenous glucose tolerance test, the plasma glucose and insulin responses showed similar patterns; however, during the concomitant adrenaline infusion, the treated rats showed a better glucose tolerance than their controls. These results indicate that rats chronically treated with adrenaline adapt to the diabetogenic effect of an infusion of adrenaline by have a lower inhibition of insulin release, although the lower basal insulin levels may indicate a greater sensitivity to endogenous insulin.  相似文献   

20.
In conscious pigs, intravenous infusion of serial doses of cholecystokinin octapeptide (CCK8; 2.9-232.3 pmol.kg-1.min-1) upon a background of secretin resulted in a linear increase of plasma CCK-like immunoreactivity (CCK-LI) concentration and evoked a dose-related increase of pancreatic volume and bicarbonate and protein outputs. The threshold plasma CCK-LI concentration for significant pancreatic response was 103.8 +/- 10.2 pM using a CCK8 dose of 8.8 pmol.kg-1.min-1. The maximum pancreatic response was observed for a plasma CCK-LI level of 498.0 +/- 15.3 pM using 77.2 pmol CCK8.kg-1.min-1. In anesthetized pigs, the threshold plasma CCK-LI concentration for pancreatic response was 1500 pM (actual CCK8 dose of 60.3 pmol.kg-1.min-1). The physiological relevance of this finding was assessed by comparing the food-induced increase of pancreatic secretion with that of plasma CCK-LI. Food ingestion was followed by a sharp pancreatic response and by a progressive increase of plasma CCK-LI to a peak increment of about 15 pM. Gel chromatography of portal and peripheral plasma from fed animals revealed three major peaks in the volumes of CCK33/39 and CCK8, and in a volume intermediate between CCK33/39 and CCK8. An additional minor component eluted ahead of CCK33/39. CCK8, which is one of the CCK components released after food intake, appears to be a fairly weak pancreatic stimulant in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号