首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Programmed cell death of the Müllerian duct eliminates the primitive female reproductive tract during normal male sexual differentiation. Müllerian inhibiting substance (MIS or AMH) triggers regression by propagating a BMP-like signaling pathway in the Müllerian mesenchyme that culminates in apoptosis of the Müllerian duct epithelium. Presently, the paracrine signal(s) used in this developmental event are undefined. We have identified a member of the matrix metalloproteinase gene family, Mmp2, as one of the first candidate target genes downstream of the MIS cascade to function as a paracrine death factor in Müllerian duct regression. Consistent with a role in regression, Mmp2 expression was significantly elevated in male but not female Müllerian duct mesenchyme. Furthermore, this sexually dimorphic expression of Mmp2 was extinguished in mice lacking the MIS ligand, suggesting strongly that Mmp2 expression is regulated by MIS signaling. Using rat organ genital ridge organ cultures, we found that inhibition of MMP2 activity prevented MIS-induced regression, whereas activation of MMP2 promoted ligand-independent Müllerian duct regression. Finally, MMP2 antisense experiments resulted in partial blockage of Müllerian duct regression. Based on our findings, we propose that similar to other developmental programs where selective elimination or remodeling of tissues occurs, localized induction of extracellular proteinases is critical for normal male urogenital development.  相似文献   

2.
Examination of Müllerian inhibiting substance (MIS) signaling in the rat in vivo and in vitro revealed novel developmental stage- and tissue-specific events that contributed to a window of MIS responsiveness in Müllerian duct regression. The MIS type II receptor (MISRII)-expressing cells are initially present in the coelomic epithelium of both male and female urogenital ridges, and then migrate into the mesenchyme surrounding the male Müllerian duct under the influence of MIS. Expression of the genes encoding MIS type I receptors, Alk2 and Alk3, is also spatiotemporally controlled; Alk2 expression appears earlier and increases predominantly in the coelomic epithelium, whereas Alk3 expression appears later and is restricted to the mesenchyme, suggesting sequential roles in Müllerian duct regression. MIS induces expression of Alk2, Alk3 and Smad8, but downregulates Smad5 in the urogenital ridge. Alk2-specific small interfering RNA (siRNA) blocks both the transition of MISRII expression from the coelomic epithelium to the mesenchyme and Müllerian duct regression in organ culture. Müllerian duct regression can also be inhibited or accelerated by siRNA targeting Smad8 and Smad5, respectively. Thus, the early action of MIS is to initiate an epithelial-to-mesenchymal transition of MISRII-expressing cells and to specify the components of the receptor/SMAD signaling pathway by differentially regulating their expression.  相似文献   

3.
In developing male embryos, the female reproductive tract primordia (Müllerian ducts) regress due to the production of testicular anti-Müllerian hormone (AMH). Because of the association between secreted frizzled-related proteins (SFRPs) and apoptosis, their reported developmental expression patterns and the role of WNT signaling in female reproductive tract development, we examined expression of Sfrp2 and Sfrp5 during development of the Müllerian duct in male (XY) and female (XX) mouse embryos. We show that expression of both Sfrp2 and Sfrp5 is dynamic and sexually dimorphic. In addition, the male-specific expression observed for both genes prior to the onset of regression is absent in mutant male embryos that fail to undergo Müllerian duct regression. We identified ENU-induced point mutations in Sfrp5 and Sfrp2 that are predicted to severely disrupt the function of these genes. Male embryos and adults homozygous for these mutations, both individually and in combination, are viable and apparently fertile with no overt abnormalities of reproductive tract development.  相似文献   

4.
5.
6.
7.
Signal reception of Müllerian inhibiting substance (MIS) in the mesenchyme around the embryonic Müllerian duct in the male is essential for regression of the duct. Deficiency of MIS or of the MIS type II receptor, MISRII, results in abnormal reproductive development in the male due to the maintenance of the duct. MIS is a member of the transforming growth factor-beta (TGFbeta) superfamily of secreted protein hormones that signal through receptor complexes of type I and type II serine/threonine kinase receptors. To investigate candidate MIS type I receptors, we examined reporter construct activation by MIS. The bone morphogenetic protein (BMP)-responsive Tlx2 and Xvent2 promoter-driven reporter constructs were stimulated by MIS but the TGFbeta/activin-induced p3TP-lux or CAGA-luc reporter constructs were not. The induction of Tlx2-luc was dependent upon the kinase activity of MISRII and was blocked by a dominant negative truncated ALK2 (tALK2) receptor but not by truncated forms of the other BMP type I receptors ALK1, ALK3, or ALK6. MIS induced activation of a Gal4DBD-Smad1 but not a Gal4DBD-Smad2 fusion protein. This activation could also be blocked by tALK2. The BMP-induced inhibitory Smad, Smad6, was up-regulated by MIS endogenously in Leydig cell-derived lines and is expressed in male but not female Müllerian duct mesenchyme. ALK6 has been shown to function as an MIS type I receptor. Investigation of the pattern of ALK2, MISRII, and ALK6 in the developing urogenital system demonstrated overlapping expression of ALK2 and MISRII in the mesenchyme surrounding the duct while ALK6 was observed only in the epithelium. Examination of ALK6 -/- male animals revealed no defect in duct regression. The reporter construct analysis, pattern of expression of the receptors, and analysis of ALK6-deficient animals suggest that ALK2 is the MIS type I receptor involved in Müllerian duct regression.  相似文献   

8.
Amniotes, regardless of genetic sex, develop two sets of genital ducts: the Wolffian and Müllerian ducts. For normal sexual development to occur, one duct must differentiate into its corresponding organs, and the other must regress. In mammals, the Wolffian duct differentiates into the male reproductive tract, mainly the vasa deferentia, epididymides, and seminal vesicles, whereas the Müllerian duct develops into the four components of the female reproductive tract, the oviducts, uterus, cervix, and upper third of the vagina. In males, the fetal Leydig cells produce testosterone, which stimulates the differentiation of the Wolffian duct, whereas the Sertoli cells of the fetal testes express anti-Müllerian hormone, which activates the regression of the Müllerian duct. Anti-Müllerian hormone is a member of the transforming growth factor-beta (TGF-beta) family of secreted signaling molecules and has been shown to signal through the BMP pathway. It binds to its type II receptor, anti-Müllerian hormone receptor 2 (AMHR2), in the Müllerian duct mesenchyme and through an unknown mechanism(s); the mesenchyme induces the regression of the Müllerian duct mesoepithelium. Using tissue-specific gene inactivation with an Amhr2-Cre allele, we have determined that two TGF-beta type I receptors (Acvr1 and Bmpr1a) and all three BMP receptor-Smads (Smad1, Smad5, and Smad8) function redundantly in transducing the anti-Müllerian hormone signal required for Müllerian duct regression. Loss of these genes in the Müllerian duct mesenchyme results in male infertility due to retention of Müllerian duct derivatives in an otherwise virilized male.  相似文献   

9.
We have isolated the bovine and human genes for Müllerian inhibiting substance (MIS), a testicular glycoprotein that causes regression of the Müllerian duct during development of the male embryo. The mRNA sequence of bovine MIS, determined from an analysis of cDNA and genomic clones, codes for a protein of 575 amino acids containing a 24 amino acid leader peptide. The human gene has five exons that code for a protein of 560 amino acids. A comparison of the bovine and human MIS proteins reveals a highly conserved C-terminal domain that shows marked homology with human transforming growth factor-beta and the beta chain of porcine inhibin. Animal cells transfected with the human gene secrete biologically active MIS, which causes regression of the rat Müllerian duct in vitro.  相似文献   

10.
Müllerian inhibiting substance (MIS), also known as anti-Müllerian hormone, is a glycoprotein belonging to transforming growth factor beta superfamily. In mammals, MIS is responsible for regression of Müllerian ducts, anlagen of the female reproductive ducts, in the male fetus. However, the role of MIS in gonadal sex differentiation of teleost fishes, which do not have the Müllerian ducts, has yet to be clarified. To address the role of MIS on gonadal sex differentiation in fishes, we isolated a MIS cDNA from the Japanese flounder testis and examined the expression pattern of MIS mRNA in gonads of both sexes during sex differentiation period. In this study, we present the first demonstration of sexually dimorphic expression of MIS mRNA during sex differentiation in teleost fishes, similarly to amniote vertebrates which possess the Müllerian ducts.  相似文献   

11.
A study was undertaken to determine (1) the effects of endogenous Müllerian inhibiting substance (MIS) on the developing human fetal genital tract; (2) the time in fetal life when MIS is first capable of inhibiting the growth of the embryonic Müllerian ducts; and (3) the reversibility of the effects of MIS on the developing male Müllerian ducts. Human fetal reproductive tracts were transplanted and grown for sustained periods in vivo in athymic nude mice. The genital tracts from 12 male human fetuses, ages 51 to 68 days postovulation, were grafted without their associated gonads into castrated murine hosts and grown for 30 to 70 days. Controls consisted of genital tracts from 8 female human fetuses, ages day 53 to 70 that were grown under identical conditions. Male specimens grew to approximately one-half the size of female specimens and disclosed varying degrees of inhibition of the Müllerian duct system from absence of the Müllerian ducts in older specimens (after Day 63) to poorly segregated segments of stroma as the mildest defect (less than Day 61). It is concluded that (1) MIS secretion by the embryonic testes probably begins before Day 51 of gestation; (2) the effects of MIS are progressive during the so-called critical window; (3) the effects of MIS are permanent; and (4) the mesenchyme is an important target of MIS.  相似文献   

12.
An immunoblotting method was used to purify a Müllerian-inhibiting substance (MIS)-specific antiserum. The serum was used to quantify the content of MIS in developing chick gonads by competitive enzyme-linked immunosorbent assay. From embryonic stages to the eleventh week after hatching, male chicken testes have a high content of MIS in the following two stages: (1) from the sixth to the eighth day and from the fourteenth to the twentieth day of incubation, and (2) from the second to the eighth week after hatching. The high content of MIS in the early embryonic stage is closely correlated with the natural pattern of Müllerian duct regression observed in the male embryo. From the sixth to the twelfth day of incubation, the female right ovary contains a higher content of MIS than that of the left ovary. Up to the fourteenth day of incubation, the content of MIS in the left ovary reaches maximum levels and then declines. The combination of MIS from right and left ovaries was found to be highest in the ninth to the fourteenth day of incubation, when the regression of the right Müllerian duct reached its highest peak. However, the question of the inability of MIS to cause regression of the female left Müllerian duct and the caudal part of the right duct is raised and discussed. The hypothesis that prenatal estrogenic hormone (diethylstilbestrol) protects the Müllerian duct has been reevaluated. It was found that estrogen does not reduce the MIS content in prenatally treated gonads.  相似文献   

13.
During embryogenesis normal male phenotypic development requires the action of Müllerian Inhibiting Substance (MIS) which is secreted by Sertoli cells of the fetal testis. As testes differentiate in genetic (XY) males, they produce MIS which causes regression of the Müllerian ducts, the anlagen of the female reproductive tract. Soon thereafter, testicular androgens stimulate the Wolffian ducts. In females, on the other hand, MIS is not produced by grandulosa cells until after birth, before which, estrogens induce Müllerian duct development, while the Wolffian ducts passively atrophy in the absence of androgenic stimulation. High serum MIS levels in males are maintained until puberty, whereupon they fall to baseline levels. In females MIS is undetectable in serum until the peripubertal period when values approach the baseline levels of males. This distinct pattern of sexual and ontogenic expression presupposes and requires tight regulation. MIS may play a role in gonadal function and development. Our laboratory has shown that an important role for ovarian MIS is to inhibit oocyte meiosis, perhaps providing maximal oocyte maturation prior to selection for ovulation and subsequent fertilization. Furthermore, Vigier et al. (Development 100:43-55) have recently obtained evidence that MIS may influence testicular differentiation, coincident with inhibition of aromatase activity. Current structure-function studies demonstrate that MIS, like other growth regulators in its protein family, requires proteolytic cleavage to exhibit full biological activity. MIS can be inhibited by epidermal growth factor. This antagonism, which is common to all MIS functions so far investigated, is associated with inhibition of EGF receptor autophosphorylation. We have provided evidence that bovine MIS can inhibit female reproductive tract tumors arising in adults.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
I report on the synthesis of fibronectin in the developing chick Müllerian duct mesenchymal cells. Before the differentiation of female chick Müllerian duct, the amount of fibronectin in the cells of the right duct is 44% lower than in the left duct. While after differentiation, the amount of fibronectin in the right duct is 29% lower, as compared to the left duct. Estrogenic hormone diethylstilbestrol (DES) treatment was carried out at the 5th day of incubation when both female Müllerian ducts were undifferentiated. Three days after DES treatment, the regression of the right duct was prevented, and the amount of fibronectin was induced by 89%, while induction in the left duct was 11%. Eight days after DES administration, the amount of fibronectin in the right and left Müllerian duct was induced by 150 and 76%, respectively. After DES treatment in the male embryo, both Müllerian ducts were retained, and the capacity for fibronectin synthesis was preserved. Application of the indirect immunocytochemical labeling technique revealed Müllerian-inhibiting substance (MIS) binding sites on the membrane of the Müllerian mesenchymal cells. The addition of chick MIS in the culture medium reduced the amount of detectable fibronectin in the cultured mesenchymal cells. The synthesis of fibronectin in intestinal mesenchymal cells was not affected by DES or MIS.  相似文献   

15.
Members of the Wnt family of genes such as Wnt4, Wnt5a, and Wnt7a have been implicated in the formation and morphogenesis of the Müllerian duct into various parts of the female reproductive tract. These WNT ligands elicit their action via either the canonical WNT/beta-catenin or the non-canonical WNT/calcium pathway and could possibly function redundantly in Müllerian duct differentiation. By using the Müllerian duct-specific anti-Müllerian hormone receptor 2 cre (Amhr2-cre) mouse line, we established a conditional knockout model that removed beta-catenin specifically in the mesenchyme of the Müllerian duct. At birth, loss of beta-catenin in the Müllerian duct mesenchyme disrupted the normal coiling of the oviduct in the knockout embryo, resembling the phenotype of the Wnt7a knockout. The overall development of the female reproductive tract was stunted at birth with a decrease in proliferation in the mesenchyme and epithelium. We also discovered that Wnt5a and Wnt7a expression remained normal, excluding the possibility that the phenotypes resulted from a loss of these WNT ligands. We examined the expression of Frizzled (Fzd), the receptors for WNT, and found that Fzd1 is one receptor present in the Müllerian duct mesenchyme and could be the putative receptor for beta-catenin activation in the Müllerian duct. In summary, our findings suggest that mesenchymal beta-catenin is a downstream effector of Wnt7a that mediates the patterning of the oviduct and proper differentiation of the uterus.  相似文献   

16.
During male sexual development in reptiles, birds, and mammals, anti-Müllerian hormone (AMH) induces the regression of the Müllerian ducts that normally form the primordia of the female reproductive tract. Whereas Müllerian duct regression occurs during fetal development in eutherian mammals, in marsupial mammals this process occurs after birth. To investigate AMH in a marsupial, we isolated an orthologue from the tammar wallaby (Macropus eugenii) and characterized its expression in the testes and ovaries during development. The wallaby AMH gene is highly conserved with the eutherian orthologues that have been studied, particularly within the encoded C-terminal mature domain. The N-terminus of marsupial AMH is divergent and larger than that of eutherian species. It is located on chromosome 3/4, consistent with its autosomal localization in other species. The wallaby 5' regulatory region, like eutherian AMH genes, contains binding sites for SF1, SOX9, and GATA factors but also contains a putative SRY-binding site. AMH expression in the developing testis begins at the time of seminiferous cord formation at 2 days post partum, and Müllerian duct regression begins shortly afterward. In the developing testis, AMH is localized in the cytoplasm of the Sertoli cells but is lost by adulthood. In the developing ovary, there is no detectable AMH expression, but in adults it is produced by the granulosa cells of primary and secondary follicles. It is not detectable in atretic follicles. Collectively, these studies suggest that AMH expression has been conserved during mammalian evolution and is intimately linked to upstream sex determination mechanisms.  相似文献   

17.
Regardless of their sex chromosome karyotype, amniotes develop two pairs of genital ducts, the Wolffian and Müllerian ducts. As the Müllerian duct forms, its growing tip is intimately associated with the Wolffian duct as it elongates to the urogenital sinus. Previous studies have shown that the presence of the Wolffian duct is required for the development and maintenance of the Müllerian duct. The Müllerian duct is known to form by invagination of the coelomic epithelium, but the mechanism for its elongation to the urogenital sinus remains to be defined. Using genetic fate mapping, we demonstrate that the Wolffian duct does not contribute cells to the Müllerian duct. Experimental embryological manipulations and molecular studies show that precursor cells at the caudal tip of the Müllerian duct proliferate to deposit a cord of cells along the length of the urogenital ridge. Furthermore, immunohistochemical analysis reveals that the cells of the developing Müllerian duct are mesoepithelial when deposited, and subsequently differentiate into an epithelial tube and eventually the female reproductive tract. Our studies define cellular and molecular mechanisms for Müllerian duct formation.  相似文献   

18.
In normal males, Müllerian Inhibiting Substance (MIS), produced by testes during an embryonic critical period, is thought to induce regression of the Müllerian duct system, including the oviducts and uterus. In XX sex-reversed dogs, an apparent contradiction has been reported: The uterus persists in the presence of testes or ovotestes. The objective of this study is to determine whether testes of XX male and ovotestes of true hermaphrodite dogs produce MIS, and to examine the anatomy of Müllerian duct derivatives of affected dogs for evidence of regression. Gonadal samples were tested for MIS activity in a bioassay. The mean MIS activity score of XX males was similar to that of normal XY males and significantly greater than that of normal XX females. The mean MIS activity score of XX true hermaphrodites was intermediate between normal XX females and XY males. Within the true hermaphrodite group, ovotestes in which the proportion of testicular tissue was greater than or equal to 1/2 had higher MIS scores than those in which the proportion of testicular tissue was less than 1/2. XX males had a well-developed epididymis adjacent to each testis, but no oviducts. In true hermaphrodites, the oviduct regressed and an epididymis was present when greater than or equal to 1/2 of the adjacent ovotestis was testicular, and MIS activity in that gonad was high. A few ovotestes with intermediate levels of MIS activity had both an oviduct and an epididymis. Regression of the oviductal portion of the Müllerian duct system was positively correlated to the amount of testicular tissue and the MIS activity of the gonad, as would be predicted by Jost's original hypothesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.  相似文献   

20.
Müllerian inhibiting substance (MIS or anti-Müllerian hormone) is a member of the transforming growth factor-beta family and plays a pivotal role in proper male sexual differentiation. Members of this family signal by the assembly of two related serine/threonine kinase receptors, referred to as type I or type II receptors, and downstream cytoplasmic Smad effector proteins. Although the MIS type II receptor (MISRII) has been identified, the identity of the type I receptor is unclear. Here we report that MIS activates a bone morphogenetic protein-like signaling pathway, which is solely dependent on the presence of the MISRII and bioactive MIS ligand. Among the multiple type I candidates tested, only ALK2 resulted in significant enhancement of the MIS signaling response. Furthermore, dominant-negative and antisense strategies showed that ALK2 is essential for MIS-induced signaling in two independent assays, the cellular Tlx-2 reporter gene assay and the Müllerian duct regression organ culture assay. In contrast, ALK6, the other candidate MIS type I receptor, was not required. Expression analyses revealed that ALK2 is present in all MIS target tissues including the mesenchyme surrounding the epithelial Müllerian duct. Collectively, we conclude that MIS employs a bone morphogenetic protein-like signaling pathway and uses ALK2 as its type I receptor. The use of this ubiquitously expressed type I receptor underscores the role of the MIS ligand and the MIS type II receptor in establishing the specificity of the MIS signaling cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号