首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Packaging of the eukaryotic genome into higher order chromatin structures is tightly related to gene expression. Pericentromeric heterochromatin is typified by accumulations of heterochromatin protein 1 (HP1), methylation of histone H3 at lysine 9 (MeH3K9) and global histone deacetylation. HP1 interacts with chromatin by binding to MeH3K9 through the chromodomain (CD). HP1 dimerizes with itself and binds a variety of proteins through its chromoshadow domain. We have analyzed at the single cell level whether HP1 lacking its functional CD is able to induce heterochromatinization in vivo. We used a lac-operator array-based system in mammalian cells to target EGFP-lac repressor tagged truncated HP1α and HP1β to a lac operator containing gene-amplified chromosome region in living cells. After targeting truncated HP1α or HP1β we observe enhanced tri-MeH3K9 and recruitment of endogenous HP1α and HP1β to the chromosome region. We show that CD-less HP1α can induce chromatin condensation, whereas the effect of truncated HP1β is less pronounced. Our results demonstrate that after lac repressor-mediated targeting, HP1α and HP1β without a functional CD are able to induce heterochromatinization.  相似文献   

2.
Cell differentiation is a multi-step process marked by progressive silencing of gene expression through mechanisms believed to involve heterochromatin. We have previously shown that interaction between the Krüppel associated box-containing zinc finger proteins (KRAB-ZFP) corepressor TIF1β and the heterochromatin proteins HP1 is essential for progression through differentiation of embryonal carcinoma F9 cells. This analysis clearly demonstrated the link between gene specific repressors, components of heterochromatin and cell differentiation. In mammals, there are three HP1 isotypes, HP1α, β, and γ, that appear to be involved in both eu- and heterochromatin, but whose individual functions are still poorly defined. Therefore, the aim of the present study was to determine in vivo (i) which HP1 isotypes interact with TIF1β, (ii) in which sub-nuclear compartments these interactions occur and (iii) whether these interactions are regulated during cell differentiation. To address these questions, we established stable F9 cell lines co-expressing TIF1β fused to the ECFP fluorophore and HP1α, β, or γ fused to the EYFP fluorophore. Using the Föster resonance energy transfer (FRET) technology, we map the physical interaction between TIF1β-CFP and the different HP1-YFP isotypes in living F9 cells. We demonstrate that in non-differentiated cells, TIF1β-CFP/HP1-YFP interaction occurs only within euchromatin and involves selectively HP1β-YFP and HP1γ-YFP, but not HP1α-YFP. Furthermore, in differentiated cells, TIF1β-CFP selectively associates with HP1β-YFP within heterochromatin, while TIF1β-CFP/HP1γ-YFP is exclusively present within euchromatin. No physical TIF1β-CFP/HP1α-YFP interaction is detected in neither non differentiated nor differentiated cells. These results support the notion that, in vivo, HP1 isotypes have specific nonredundant functions and provide evidence for HP1β playing an essential role in the shuttling of TIF1β from eu- to heterochromatin during cell differentiation.  相似文献   

3.
4.
5.
6.
7.
There are three mammalian HP1 genes, Cbx5 (encoding HP1α), Cbx1 (encoding HP1β) and Cbx3 (encoding (HP1γ). Despite their high degree of sequence homology mutational analysis has revealed different phenotypes indicating that they possess different functions. Notably, the Cbx1 mutation is lethal in its homozygous condition. The Cbx1 null phenotype is therefore more severe than the Suv(3)9h1/h2 double-mutant mouse, indicating that the essential function of the Cbx1 gene product, HP1β, is likely to lie outside its interaction with the heterochromatic H3K9me3 determinant of the “histone code” imposed by the Suv(3)9h1/h2 HMTases. Comparisons of HP1 mutants in flies and fungi with corresponding mutations in Suv(3)9 genes show that HP1 mutations are invariably more severe than mutation in Suv(3)9 genes. The implications of these data for HP1 function are discussed.  相似文献   

8.
9.
Proteins that possess a chromo domain are well‐known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy‐terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization. To expand these studies, we examined chromo domain proteins in the ciliate Tetrahymena thermophila, which has functionally diverse and developmentally regulated heterochromatin domains. We identified thirteen proteins similar to HP1. Together they possess only a fraction of the possible chromo domain subtypes and most lack a recognizable chromo shadow domain. Using fluorescence microscopy to track chromatin localization of tagged proteins through the life cycle, we show evidence that in T. thermophila this family has diversified with biological roles in RNAi‐directed DNA elimination, germline genome structure, and somatic heterochromatin. Those proteins with H3K27me3 binding sequence characteristics localize to chromatin in mature nuclei, whereas those with H3K9me2/3 binding characteristics localize to developing nuclei undergoing DNA elimination. Findings point to an expanded and diversified family of chromo domain proteins that parallels heterochromatin diversity in ciliates.  相似文献   

10.
Two key components of mammalian heterochromatin that play a structural role in higher order chromatin organization are the heterochromatin protein 1alpha (HP1alpha) and the linker histone H1. Here, we show that these proteins interact in vivo and in vitro through their hinge and C-terminal domains, respectively. The phosphorylation of H1 by CDK2, which is required for efficient cell cycle progression, disrupts this interaction. We propose that phosphorylation of H1 provides a signal for the disassembly of higher order chromatin structures during interphase, independent of histone H3-lysine 9 (H3-K9) methylation, by reducing the affinity of HP1alpha for heterochromatin.  相似文献   

11.
12.
Pericentric regions form epigenetically organized silent heterochromatin structures that accumulate histone H3 lysine 9 trimethylation (H3K9me3) and HP1. At pericentric regions, Suv39h is the major enzyme that generates H3K9me3. Suv39h also interacts directly with HP1, a methylated H3K9-binding protein. However, it is not well characterized how HP1 interaction is important for Suv39h accumulation and Suv39h-mediated H3K9me3 formation at the pericentromere. To address this, we introduced the HP1 binding-defective N-terminally truncated mouse Suv39h1 (ΔN) into Suv39h-deficient embryonic stem cells. Interestingly, pericentric accumulation of ΔN and ΔN-mediated H3K9me3 was observed to recover, but HP1 accumulation was only marginally restored. ΔN also rescued DNA methyltransferase Dnmt3a and -3b accumulation and DNA methylation of the pericentromere. In contrast, other pericentric heterochromatin features, such as ATRX protein association and H4K20me3, were not recovered. Finally, derepressed major satellite repeats were partially silenced by ΔN expression. These findings clearly showed that the Suv39h-HP1 binding is dispensable for pericentric H3K9me3 and DNA methylation, but this interaction and HP1 recruitment/accumulation seem to be crucial for complete formation of heterochromatin.  相似文献   

13.

Background  

In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP) by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA) and β (TSB) homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS) complex in Arabidopsis. On the other hand maize (Zea mays) expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB.  相似文献   

14.

Background  

Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1α and PP1β subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1α and PP1β.  相似文献   

15.
Heterochromatin Protein 1 (HP1) is a structural component of silent chromatin at telomeres and centromeres. Euchromatic genes repositioned near heterochromatin by chromosomal rearrangements are typically silenced in an HP1-dependent manner. Silencing is thought to involve the spreading of heterochromatin proteins over the rearranged genes. HP1 associates with centric heterochromatin through an interaction with methylated lysine 9 of histone H3, a modification generated by SU(VAR)3-9. The current model for spreading of silent chromatin involves HP1-dependent recruitment of SU(VAR)3-9, resulting in the methylation of adjacent nucleosomes and association of HP1 along the chromatin fiber. To address mechanisms of silent chromatin formation and spreading, HP1 was fused to the DNA-binding domain of the E. coli lacI repressor and expressed in Drosophila melanogaster stocks carrying heat shock reporter genes positioned 1.9 and 3.7 kb downstream of lac operator repeats. Association of lacI-HP1 with the repeats resulted in silencing of both reporter genes and correlated with a closed chromatin structure consisting of regularly spaced nucleosomes, similar to that observed in centric heterochromatin. Chromatin immunoprecipitation experiments demonstrated that HP1 spread bi-directionally from the tethering site and associated with the silenced reporter transgenes. To examine mechanisms of spreading, the effects of a mutation in Su(var)3-9 were investigated. Silencing was minimally affected at 1.9 kb, but eliminated at 3.7 kb, suggesting that HP1-mediated silencing can operate in a SU(VAR)3-9-independent and -dependent manner.  相似文献   

16.
17.
The ChlR1 DNA helicase, encoded by DDX11 gene, which is responsible for Warsaw breakage syndrome (WABS), has a role in sister-chromatid cohesion. In this study, we show that human ChlR1 deficient cells exhibit abnormal heterochromatin organization. While constitutive heterochromatin is discretely localized at perinuclear and perinucleolar regions in control HeLa cells, ChlR1-depleted cells showed dispersed localization of constitutive heterochromatin accompanied by disrupted centromere clustering. Cells isolated from Ddx11−/− embryos also exhibited diffuse localization of centromeres and heterochromatin foci. Similar abnormalities were found in HeLa cells depleted of combinations of HP1α and HP1β. Immunofluorescence and chromatin immunoprecipitation showed a decreased level of HP1α at pericentric regions in ChlR1-depleted cells. Trimethyl-histone H3 at lysine 9 (H3K9-me3) was also modestly decreased at pericentric sequences. The abnormality in pericentric heterochromatin was further supported by decreased DNA methylation within major satellite repeats of Ddx11−/− embryos. Furthermore, micrococcal nuclease (MNase) assay revealed a decreased chromatin density at the telomeres. These data suggest that in addition to a role in sister-chromatid cohesion, ChlR1 is also involved in the proper formation of heterochromatin, which in turn contributes to global nuclear organization and pleiotropic effects.  相似文献   

18.

Background  

Histone lysine methylation plays a fundamental role in chromatin organization and marks distinct chromatin regions. In particular, trimethylation at lysine 9 of histone H3 (H3K9) and at lysine 20 of histone H4 (H4K20) governed by the histone methyltransferases SUV39H1/2 and SUV420H1/2 respectively, have emerged as a hallmark of pericentric heterochromatin. Controlled chromatin organization is crucial for gene expression regulation and genome stability. Therefore, it is essential to analyze mechanisms responsible for high order chromatin packing and in particular the interplay between enzymes involved in histone modifications, such as histone methyltransferases and proteins that recognize these epigenetic marks.  相似文献   

19.

Background

Heterochromatin protein 1 (HP1) is important in the establishment, propagation, and maintenance of constitutive heterochromatin, especially at the pericentromeric region. HP1 might participate in recruiting and directing Mis12 to the centromere during interphase, and HP1 disruption or abrogation might lead to the loss of Mis12 incorporation into the kinetochore. Therefore, the centromere structure and kinetochore relaxation that are promoted in the absence of Mis12 could further induce chromosome instability (CIN) by reducing the capacity of the kinetochore to anchor microtubules. The aim of this study was to determine whether alterations in the localization of HP1 proteins induced by trichostatin A (TSA) modify Mis12 and Centromere Protein A (CENP-A) recruitment to the centromere and whether changes in the expression of HP1 proteins and H3K9 methylation at centromeric chromatin increase CIN in HCT116 and WI-38 cells.

Methods

HCT116 and WI-38 cells were cultured and treated with TSA to evaluate CIN after 24 and 48 h of exposure. Immunofluorescence, Western blot, ChIP, and RT-PCR assays were performed in both cell lines to evaluate the localization and abundance of HP1α/β, Mis12, and CENP-A and to evaluate chromatin modifications during interphase and mitosis, as well as after 24 and 48 h of TSA treatment.

Results

Our results show that the TSA-induced reduction in heterochromatic histone marks on centromeric chromatin reduced HP1 at the centromere in the non-tumoral WI-38 cells and that this reduction was associated with cell cycle arrest and CIN. However, in HCT116 cells, HP1 proteins, together with MIS12 and CENP-A, relocated to centromeric chromatin in response to TSA treatment, even after H3K9me3 depletion in the centromeric nucleosomes. The enrichment of HP1 and the loss of H3K9me3 were associated with an increase in CIN, suggesting a response mechanism at centromeric and pericentromeric chromatin that augments the presence of HP1 proteins in those regions, possibly ensuring chromosome segregation despite serious CIN. Our results provide new insight into the epigenetic landscape of centromeric chromatin and the role of HP1 proteins in CIN.
  相似文献   

20.
HP1 proteins are central to the assembly and spread of heterochromatin containing histone H3K9 methylation. The chromodomain (CD) of HP1 proteins specifically recognizes the methyl mark on H3 peptides, but the same extent of specificity is not observed within chromatin. The chromoshadow domain of HP1 proteins promotes homodimerization, but this alone cannot explain heterochromatin spread. Using the S. pombe HP1 protein, Swi6, we show that recognition of H3K9-methylated chromatin in vitro relies on an interface between two CDs. This interaction causes Swi6 to tetramerize on a nucleosome, generating two vacant CD sticky ends. On nucleosomal arrays, methyl mark recognition is highly sensitive to internucleosomal distance, suggesting that the CD sticky ends bridge nearby methylated nucleosomes. Strengthening the CD-CD interaction enhances silencing and heterochromatin spread in vivo. Our findings suggest that recognition of methylated nucleosomes and HP1 spread on chromatin are structurally coupled and imply that methylation and nucleosome arrangement synergistically regulate HP1 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号