共查询到20条相似文献,搜索用时 9 毫秒
1.
The physical and covalent binding of the carcinogen benzo(a)pyrene-7,8-diol-9,10-oxide (BaPDE) to poly(dG-dC).(dG-dC) and poly(dG-m5dC).(dG-m5dC) in the B and Z forms were studied utilizing absorbance, fluorescence and linear dichroism techniques. In the case of poly(dG-dC).(dG-dC) the decrease in the covalent binding of BaPDE with increasing NaCl concentration (0.1-4 M) as the B form is transformed to the Z form is attributed to the effects of high ionic strengths on the reactivity and physical binding of BaPDE to the polynucleotides; these effects tend to obscure differences in reactivities with the B and Z forms of the nucleic acids. In the case of poly(dG-m5dC).(dG-m5dC) the B-to-Z transition is induced at low ionic strength (2 mM NaCl + 10 microM Co(NH3)6Cl3) and the covalent binding is found to be 2-3-times lower to the Z form than to the B form. Physical binding of BaPDE by intercalation, which precedes the covalent binding reaction, is significantly lower in the Z form than in the B form, thus accounting, in part, for the lower covalent binding. The linear dichroism characteristics of BaPDE covalently bound to the Z and B forms of poly(dG-m5dC).(dG-m5dC) are consistent with nonintercalative, probably external conformations of the aromatic pyrenyl residues. 相似文献
2.
3.
R Jankowiak 《Biophysical chemistry》1992,42(2):133-146
Two types of heterogeneity of adducts are illustrated and discussed utilizing non-line narrowed (S2----S0 laser excitation) and line-narrowed (excitation into the (0,0) origin band) fluorescence spectra at low temperatures. The first type (type A) is due to structurally distinct and/or energetically inequivalent conformers. The second one (type B) is provided by an inhomogeneous environment of DNA and polynucleotides. In light of the above, the non-exponential photodissociation kinetics of the (+/-)-anti-BPDE-DNA and -polynucleotide adducts have been reanalyzed in terms of a dispersive first order chemical reaction, where the inhomogeneous effects are explicitly included. It is demonstrated that the DNA structure shows considerable inhomogeneous broadening, and that type B heterogeneity is responsible for the dispersive photodissociation process. The latter is accounted for by a Gaussian distribution of activation energies, with the center of the distribution at approximately 600 meV and the full width at half-maximum equal to approximately 50 meV (approximately 2 kT). Photolabile (+/-)-anti-BPDE-DNA and -polynucleotide adducts are identified as quasi-intercalated (site I) (+)- and (-)-cis-BPDE. The calculated concentrations of cis-BPDE adducts in DNA and polynucleotides from the kinetic data are in very good agreement with the cis-BPDE adduct concentrations obtained from the spectral and/or chemical analysis. The average photodissociation rate and the photodissociation quantum yield of cis- and trans-BPDE adducts are also estimated. 相似文献
4.
Arthur T. Poulos Vladimir Kuzmin Nicholas E. Geacintov 《Journal of biochemical and biophysical methods》1982,6(4):269-281
Triplet flash photolysis techniques, coupled with quenching of the triplets by molecular oxygen, are utilized as probes of the microenvironment of polycyclic aromatic molecules bound covalently and non-covalently to DNA. The triplet-oxygen quenching properties of the following adducts in aqueous solutions at 25±1°C were investigated: covalent adducts derived from the reaction of (±)-7β,8α-dihydroxy-9α,10α-epoxy -7,8,9,10-tetrahydrobenzo[a]pyrene (BaPDE) and of (±)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaPE) with DNA, and non-covalent intercalation complexes of acridine orange (AO) and DNA. In all cases the quenching follows the Stern-Volmer quenching law with a quenching constant of KO2T≈109 M?1·s?1 for the covalent BaPDE-DNA and BaPE-DNA complexes in aqueous solution. This value of KO2T is characteristic of free molecules (not bound to DNA) and indicates that the pyrene chromophore is totally accessible to oxygen, and is thus not located at an intercalation-type of binding site in these covalent adducts. In contrast, the AO-DNA complexes are characterized by values of KO2T≈108 M?1·s?1 indicating that the intercalated AO molecules are about ten times less accessible to molecular oxygen than free AO molecules. The KO2T values for the covalent BaPDE-DNA and BaPE-DNA adducts decrease when the DNA concentration is increased in the 1·10?4?3·10?3 M range (expressed in nucleotide concentration). This effect is attributed to intermolecular DNA-DNA interactions in which segments of adjacent DNA molecules tend to cover the pyrene chromophores on other strands, thus decreasing their accessibility to oxygen. In contrast the values of KO2T for the non-covalent AO-DNA intercalation complexes are independent of DNA concentration, as expected for interior binding sites. 相似文献
5.
Fluorescence of (+)-anti-benzo(a)pyrene diol epoxide [(+)-anti-BPDE] covalently bound to poly(dG-dC) has been studied with steady-state and time-resolved techniques. Extensive formation of excimers is found, even at small (0.008) BPDE/nucleotide ratios. This indicates favored covalent binding to bases close to already modified guanines. Both fluorescence excitation spectra and lifetime measurements reveal two populations of (+)-anti-BPDE adducts: one that can form excimers and one that cannot. Three excimer lifetimes (4.5, 29, and 83 ns) are observed. Differently shifted monomer and excimer excitation spectra are discussed in terms of pyrene-pyrene exciton interactions, consistent with a distance shorter than 7 A between the excimer-forming BPDE chromophores. 相似文献
6.
M L Lockhart G E Ungers J F Deutsch L F Cavalieri B H Rosenberg 《Chemico-biological interactions》1986,58(2):217-231
Anti-benzo[a]pyrene diol epoxide (BPDE) adducts produced in vitro in SV40 initially inhibit SV40 DNA replication in vivo, in cells unexposed to BPDE. A single adduct in a replicon is probably sufficient to block DNA replication. The recovery process appears to begin immediately after infection. The rate of recovery of replicative capacity is inversely related to the initial adduct number. Holding the infected cells temporarily under conditions that prevent viral DNA replication results subsequently in increased recovery, proportional to the holding time. The mechanism of recovery appears to be constitutive and prereplicative. In addition, there is a second mode of recovery which is induced by pretreatment of the host cells with BPDE before infection. The effect of pretreatment is similar to that of extending the holding time before replication: the first molecules begin to replicate earlier but the subsequent rate of recovery is unchanged. The induced mechanism may be either a limited stoichiometric repair process or a slow replicative bypass. 相似文献
7.
The covalent binding of the tumorigenic (+) enantiomer and the nontumorigenic (-) enantiomer of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,19-tetrahydrobenzo(a)pyrene (BPDE) to double-stranded native DNA gives rise to heterogeneous adducts, especially in the case of (-)-BPDE. The covalent (+)-BPDE-DNA adducts are predominantly of the external site II type, while the (-)-BPDE-DNA adducts are predominantly of the quasi-intercalative, site I type (65%), with 35% of site II adducts. The site I adducts can be selectively photodissociated with near-ultraviolet light (quantum yields in the range 0.0003-0.005); the external site II adducts (photodissociation quantum yield 3 X 10(-5) are 10-100-times more stable. The photolability of covalent (-)-BPDE-DNA adducts accounts for the discrepancies in the linear dichroism properties of these complexes reported previously. Fluorescence quenching data, previously utilized to assess the degree of solvent exposure of the pyrenyl residues in covalent adducts, were in some cases significantly influenced by the presence of highly fluorescent tetraol dissociation products. After correcting for this effect, it is shown that the fluorescence of the external site II (+)-BPDE-DNA adducts is sensitive to acrylamide, while the fluorescence of the dominant site I (-)-BPDE-DNA adducts is not affected by this fluorescence quencher, as expected for adducts with considerable carcinogen-base stacking interactions. 相似文献
8.
Translesion replication of benzo[a]pyrene and benzo[c]phenanthrene diol epoxide adducts of deoxyadenosine and deoxyguanosine by human DNA polymerase iota 下载免费PDF全文
Frank EG Sayer JM Kroth H Ohashi E Ohmori H Jerina DM Woodgate R 《Nucleic acids research》2002,30(23):5284-5292
Human DNA polymerase ι (polι) is a Y-family polymerase whose cellular function is presently unknown. Here, we report on the ability of polι to bypass various stereoisomers of benzo[a]pyrene (BaP) diol epoxide (DE) and benzo[c]phenanthrene (BcPh) DE adducts at deoxyadenosine (dA) or deoxyguanosine (dG) bases in four different template sequence contexts in vitro. We find that the BaP DE dG adducts pose a strong block to polι-dependent replication and result in a high frequency of base misincorporations. In contrast, misincorporations opposite BaP DE and BcPh DE dA adducts generally occurred with a frequency ranging between 2 × 10–3 and 6 × 10–4. Although dTMP was inserted efficiently opposite all dA adducts, further extension was relatively poor, with one exception (a cis opened adduct derived from BcPh DE) where up to 58% extension past the lesion was observed. Interestingly, another human Y-family polymerase, polκ, was able to extend dTMP inserted opposite a BaP DE dA adduct. We suggest that polι might therefore participate in the error-free bypass of DE-adducted dA in vivo by predominantly incorporating dTMP opposite the damaged base. In many cases, elongation would, however, require the participation of another polymerase more specialized in extension, such as polκ. 相似文献
9.
Mitochondria are major cellular targets of benzo[a]pyrene (BaP), a known carcinogen that also inhibits mitochondrial proliferation. Here, we report for the first time the effect of site-specific N2-deoxyguanosine (dG) and N6-deoxyadenosine (dA) adducts derived from BaP 7,8-diol 9,10-epoxide (BaP DE) and dA adducts from benzo[c]phenanthrene 3,4-diol 1,2-epoxide (BcPh DE) on DNA replication by exonuclease-deficient human mitochondrial DNA polymerase (pol γ) with and without the p55 processivity subunit. The catalytic subunit alone primarily misincorporated dAMP and dGMP opposite the BaP DE–dG adducts, and incorporated the correct dTMP as well as the incorrect dAMP opposite the DE–dA adducts derived from both BaP and BcPh. In the presence of p55 the polymerase incorporated all four nucleotides and catalyzed limited translesion synthesis past BaP DE–dG adducts but not past BaP or BcPh DE–dA adducts. Thus, all these adducts cause erroneous purine incorporation and significant blockage of further primer elongation. Purine misincorporation by pol γ opposite the BaP DE–dG adducts resembles that observed with the Y family pol η. Blockage of translesion synthesis by these DE adducts is consistent with known BaP inhibition of mitochondrial (mt)DNA synthesis and suggests that continued exposure to BaP reduces mtDNA copy number, increasing the opportunity for repopulation with pre-existing mutant mtDNA and a resultant risk of mitochondrial genetic diseases. 相似文献
10.
Excision of benzo[a]pyrene diol epoxide I adducts from nucleosomal DNA of confluent normal human fibroblasts 总被引:3,自引:0,他引:3
The formation and removal of covalent adducts of racemic 7 beta, 8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE I) was studied in nucleosomal DNA of confluent cultures of normal human fibroblasts (NF). For this purpose NF were prelabeled in their DNA with [14C]-thymidine and treated with [3H]BPDE I. The adducts were composed of 77% (7R)-N2-(7 beta, 8 alpha, 9 alpha-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene-10-yl)deoxyguanosine, 12% of the corresponding 7S-enantiomer and of minor amounts of adducts to cytosine and adenine. The adduct composition did not change significantly in 24-h post treatment incubation. Bulk mononucleosomes were prepared from micrococcal nuclease digested nuclei and their DNA analyzed by gel electrophoresis. The adduct concentrations were determined in 145 base pair (b.p.) nucleosomal core-DNA, 165 b.p. chromatosomal DNA and in total nuclear DNA. From these data the concentration in nucleosomal linker-DNA was calculated. The initial adduct distribution was non-random and 6.3 times higher in 47 b.p. linker-DNA relative to 145 b.p. core-DNA and 9.2 times higher in 27 b.p. linker-DNA relative to 165 b.p. chromatosomal DNA. Adduct removal was very rapid during the first 8 h and more efficient from linker-DNA than from core-DNA. After this early phase the adducts located in 145 b.p. core-DNA became refractory to further excision and represent a major fraction of the adducts persisting in DNA of NF over a prolonged period. In contrast, further adduct removal was observed from nucleosomal linker-DNA. 相似文献
11.
Y-family DNA-polymerases have larger active sites that can accommodate bulky DNA adducts allowing them to bypass these lesions during replication. One member, polymerase eta (pol eta), is specialized for the bypass of UV-induced thymidine-thymidine dimers, correctly inserting two adenines. Loss of pol eta function is the molecular basis for xeroderma pigmentosum (XP) variant where the accumulation of mutations results in a dramatic increase in UV-induced skin cancers. Less is known about the role of pol eta in the bypass of other DNA adducts. A commonly encountered DNA adduct is that caused by benzo[a]pyrene diol epoxide (BPDE), the ultimate carcinogenic metabolite of the environmental chemical benzo[a]pyrene. Here, treatment of pol eta-deficient fibroblasts from humans and mice with BPDE resulted in a significant decrease in Hprt gene mutations. These studies in mammalian cells support a number of in vitro reports that purified pol eta has error-prone activity on plasmids with site-directed BPDE adducts. Sequencing the Hprt gene from this work shows that the majority of mutations are G>T transversions. These data suggest that pol eta has error-prone activity when bypassing BPDE-adducts. Understanding the basis of environmental carcinogen-derived mutations may enable prevention strategies to reduce such mutations with the intent to reduce the number of environmentally relevant cancers. 相似文献
12.
Choudhary S Doherty KM Handy CJ Sayer JM Yagi H Jerina DM Brosh RM 《The Journal of biological chemistry》2006,281(9):6000-6009
RecQ helicases are believed to function in repairing replication forks stalled by DNA damage and may also play a role in the intra-S-phase checkpoint, which delays the replication of damaged DNA, thus permitting repair to occur. Since little is known regarding the effects of DNA damage on RecQ helicases, and because the replication and recombination defects in Werner syndrome cells may reflect abnormal processing of damaged DNA associated with the replication fork, we examined the effects of specific bulky, covalent adducts at N(6) of deoxyadenosine (dA) or N(2) of deoxyguanosine (dG) on Werner (WRN) syndrome helicase activity. The adducts are derived from the optically active 7,8-diol 9,10-epoxide (DE) metabolites of the carcinogen benzo[a]pyrene (BaP). The results demonstrate that WRN helicase activity is inhibited in a strand-specific manner by BaP DE-dG adducts only when on the translocating strand. These adducts either occupy the minor groove without significant perturbation of DNA structure (trans adducts) or cause base displacement at the adduct site (cis adducts). In contrast, helicase activity is only mildly affected by intercalating BaP DE-dA adducts that locally perturb DNA double helical structure. This differs from our previous observation that intercalating dA adducts derived from benzo[c]phenanthrene (BcPh) DEs inhibit WRN activity in a strand- and stereospecific manner. Partial unwinding of the DNA helix at BaP DE-dA adduct sites may make such adducted DNAs more susceptible to the action of helicase than DNA containing the corresponding BcPh DE-dA adducts, which cause little or no destabilization of duplex DNA. The single-stranded DNA binding protein RPA, an auxiliary factor for WRN helicase, enabled the DNA unwinding enzyme to overcome inhibition by either the trans-R or cis-R BaP DE-dG adduct, suggesting that WRN and RPA may function together to unwind duplex DNA harboring specific covalent adducts that otherwise block WRN helicase acting alone. 相似文献
13.
P.G. Wislocki A.W. Wood R.L. Chang W. Levin H. Yagi O. Hernandez D.M. Jerina A.H. Conney 《Biochemical and biophysical research communications》1976,68(3):1006-1012
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BP 7,8-diol-9,10-epoxide) is a suspected metabolite of benzo[a]pyrene that is highly mutagenic and toxic in several strains of and in cultured Chinese hamster V79 cells. BP 7,8-diol-9,10-epoxide was approximately 5, 10 and 40 times more mutagenic than benzo[a]pyrene 4,5-oxide (BP 4,5-oxide) in strains TA 98 and TA 100 of and in V79 cells, respectively. Both compounds were equally mutagenic to strain TA 1538 and non-mutagenic to strain TA 1535 of . The diol epoxide was toxic to the four bacterial strains at 0.5–2.0 nmole/plate, whereas BP 4,5-oxide was nontoxic at these concentrations. In V79 cells, the diol epoxide was about 60-fold more cytotoxic than BP 4,5-oxide. 相似文献
14.
Chromatin isolated from Ehrlich ascites cells was incubated with the tumourigenic compound (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10- tetrahydrobenz[a]pyrene [(+)-anti-BPDE] at low ionic strength and the modified chromatin was analysed using flow linear dichroism (LD). The results confirm that (+)-anti-BPDE preferentially binds to the DNA in the linker regions, and furthermore show that the long axis of the bound pyrenyl chromophore is oriented parallel or close to parallel to the average orientation of the chromatin fiber axis. The data indicate that the binding geometry of (+)-anti-BPDE in chromatin is similar to that in pure DNA and deoxyguanosine-containing double-helical oligonucleotides. 相似文献
15.
D.R. Thakker H. Yagi H. Akagi M. Koreeda A.Y.H. Lu W. Levin A.W. Wood A.H. Conney D.M. Jerina 《Chemico-biological interactions》1977,16(3):281-300
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens. 相似文献
16.
Induction of vaginal Lactobacillus phages by the cigarette smoke chemical benzo[a]pyrene diol epoxide 总被引:3,自引:0,他引:3
Because smoking increases a woman's risk of contracting bacterial vaginosis (BV), which is manifested by a reduction of vaginal lactobacilli and an overgrowth of anaerobic bacteria, chemicals contained in cigarette smoke were analyzed in vitro to determine their role in reducing lactobacilli. The result showed that trace amounts of benzo[a]pyrene diol epoxide (BPDE), which can be found in vaginal secretion of women who smoke, significantly increased phage induction in lactobacilli. This finding implies that smoking may reduce vaginal lactobacilli by promoting phage induction. 相似文献
17.
18.
19.
Binding geometries of benzo[a]pyrene diol epoxide isomers covalently bound to DNA. Orientational distribution 总被引:2,自引:0,他引:2
Flow linear dichroism (LD) of different benzo[a]pyrene diol epoxide (BPDE) isomers covalently bound to calf thymus DNA or poly(dG-dC) provides information about binding geometry and DNA perturbation. With anti-BPDE the apparent angle between the long axis (z) of the pyrene chromophore and the DNA helix axis is approximately 30 degrees as evidenced from the LD of z-polarized absorption bands in the pyrenyl chromophore at 252 and 346 nm. The corresponding angle for the in-plane short axis (y) is determined to be approximately 70 degrees from a y-polarized band at 275 nm. The binding of (+)-anti-BPDE to DNA is found to cause a considerable reduction of the DNA orientation. This is ascribed to a decreased persistence length of DNA, owing either to increased flexibility ("flexible joints") or to permanent kinks at the points of binding. The reduced linear dichroism (LDr), i.e., the ratio between LD and isotropic absorbance, of the long-wavelength absorption band system of BPDE bound to DNA exhibits a wavelength dependence that indicates a relatively wide orientational distribution of the z axis of pyrene. Fluorescence data support the conclusion of a heterogeneous distribution, and a very low polarization anisotropy indicates a mobility between the different orientational states, which is rapid compared to the fluorescence lifetime (nanosecond time scale). Attempts are made to simulate the observed LDr features of the (+)-anti-BPDE-poly(dG-dC) complex using different distribution models on the assumption that the angular dependence of the spectral perturbation is due to dispersive interactions with DNA bases.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Stabilization of a reactive, electrophilic carcinogen, benzo[a]pyrene diol epoxide, by mammalian cells 总被引:1,自引:0,他引:1
M C MacLeod G Adair D Dickson-Black T Pevny R M Humphrey 《Chemico-biological interactions》1987,63(3):279-289
We have studied several features of the interactions of 7r,8t-dihydroxy-9t,10t-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I) with a DNA repair-proficient derivative of Chinese hamster ovary cells (CHO), AT3-2, and with a UV-light sensitive mutant, UVL-10, derived from AT3-2. Methods were developed for quantitating the amount of unhydrolysed BPDE-I associated with cells and for purifying DNA from cells under conditions where artificial labeling during preparation is minimized. In both cell types, about 30% of the BPDE-I added to a cell culture is rapidly taken up by the cells and is maintained in a cellular compartment in which the half-life of BPDE-I is about 10-fold longer than in aqueous medium. The kinetics of covalent binding to DNA were measured in both cell types and found to be described well by a single exponential process with a half-life of about 60 min. This is virtually identical to the half-life for intracellular hydrolysis of BPDE-I (57 min), consistent with the suggestion that this intracellular, relatively stable BPDE-I is responsible for binding. 相似文献