首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The use of polyethylene glycol (PEG) as a refolding additive to a refolding cocktail comprising the molecular bichaperone ClpB and DnaKJE significantly enhances chaperone‐mediated refolding of heat‐denatured malate dehydrogenase (MDH). The critical factor to affect the refolding yield is the time point of introducing PEG to the refolding cocktail. The refolding efficiency reached approximately 90% only when PEG was added at the beginning of refolding reaction. The synergistic coordination of an inexpensive refolding additive PEG with the ClpB/DnaKJE bichaperone system may provide an economical route to further enhance the efficacy of ClpB/DnaKJE refolding cocktail approach, facilitating its implementation in large‐scale refolding processes. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

2.
The Escherichia coli heat-shock protein ClpB reactivates protein aggregates in cooperation with the DnaK chaperone system. The ClpB N-terminal domain plays an important role in the chaperone activity, but its mechanism remains unknown. In this study, we investigated the effect of the ClpB N-terminal domain on malate dehydrogenase (MDH) refolding. ClpB reduced the yield of MDH refolding by a strong interaction with the intermediate. However, the refolding kinetics was not affected by deletion of the ClpB N-terminal domain (ClpBDeltaN), indicating that MDH refolding was affected by interaction with the N-terminal domain. In addition, the MDH refolding yield increased 50% in the presence of the ClpB N-terminal fragment (ClpBN). Fluorescence polarization analysis showed that this chaperone-like activity is explained best by a weak interaction between ClpBN and the reversible aggregate of MDH. The dissociation constant of ClpBN and the reversible aggregate was estimated as 45 muM from the calculation of the refolding kinetics. Amino acid substitutions at Leu 97 and Leu 110 on the ClpBN surface reduced the chaperone-like activity and the affinity to the substrate. In addition, these residues are involved in stimulation of ATPase activity in ClpB. Thus, Leu 97 and Leu 110 are responsible for the substrate recognition and the regulation of ATP-induced ClpB conformational change.  相似文献   

3.
The Escherichia coli molecular chaperone protein ClpB is a member of the highly conserved Hsp100/Clp protein family. Previous studies have shown that the ClpB protein is needed for bacterial thermotolerance. Purified ClpB protein has been shown to reactivate chemically and heat-denatured proteins. In this work we demonstrate that the combined action of ClpB and the DnaK, DnaJ, and GrpE chaperones leads to the activation of DNA replication of the broad-host-range plasmid RK2. In contrast, ClpB is not needed for the activation of the oriC-dependent replication of E. coli. Using purified protein components we show that the ClpB/DnaK/DnaJ/GrpE synergistic action activates the plasmid RK2 replication initiation protein TrfA by converting inactive dimers to an active monomer form. In contrast, Hsp78/Ssc1/Mdj1/Mge1, the corresponding protein system from yeast mitochondria, cannot activate the TrfA replication protein. Our results demonstrate for the first time that the ClpB/DnaK/DnaJ/GrpE system is involved in protein monomerization and in the activation of a DNA replication factor.  相似文献   

4.
The molecular chaperone protein Hsp78, a member of the Clp/Hsp100 family localized in the mitochondria of Saccharomyces cerevisiae, is required for maintenance of mitochondrial functions under heat stress. To characterize the biochemical mechanisms of Hsp78 function, Hsp78 was purified to homogeneity and its role in the reactivation of chemically and heat-denatured substrate protein was analyzed in vitro. Hsp78 alone was not able to mediate reactivation of firefly luciferase. Rather, efficient refolding was dependent on the simultaneous presence of Hsp78 and the mitochondrial Hsp70 machinery, composed of Ssc1p/Mdj1p/Mge1p. Bacterial DnaK/DnaJ/GrpE, which cooperates with the Hsp78 homolog, ClpB in Escherichia coli, could not substitute for the mitochondrial Hsp70 system. However, efficient Hsp78-dependent refolding of luciferase was observed if DnaK was replaced by Ssc1p in these experiments, suggesting a specific functional interaction of both chaperone proteins. These findings establish the cooperation of Hsp78 with the Hsp70 machinery in the refolding of heat-inactivated proteins and demonstrate a conserved mode of action of ClpB homologs.  相似文献   

5.
The rate and level of DnaK-dependent refolding of heat-inactivated Vibrio fischeri luciferase in the clp A mutant (clp A:: kan) were considerably lower then in wild-type cells. The decline in refolding level progressed with increasing heat inactivation time. A mutation of clp P had no influence on the kinetics and level of luciferase refolding. Approximately equal amounts of the DnaKJE chaperone were synthesized upon heat shock induction in E. coli clp A + and E. coli clpA::kan cells. It was assumed that, like homologous chaperone ClpB, ClpA is involved in disaggregation of denatured proteins, increasing the refolding efficiency. This in vivo phenomenon occurred only upon a prolonged incubation of cells at a higher temperature, which led to the formation of large protein aggregates that were poorly refoldable by the DnaKJE system.  相似文献   

6.
The main parameters of the trigger-factor-dependent refolding process of thermally inactivated bacterial luciferases were determined. It has been demonstrated that TF-dependent refolding is less efficient and more time consuming than DnaKJE-dependent refolding. An increase in the cellular concentration of TF was found to result in a dramatic decrease in the maximum level of refolding of thermally inactivated bacterial luciferases. Additionally, the efficiency of TF-dependent refolding was shown to decrease with an increase in the thermal stability of the substrate, that is, the level of TF-dependent refolding is significantly higher for thermolabile luciferases than for thermostable luciferases. For example, the maximum TF-dependent refolding level was determined as 30–40% for thermolabile luciferases from Aliivibrio fischeri and Photobacterium leiognathi, 10% in the case of luciferase from Vibrio harveyi, which is characterized by an average thermal stability, and finally 0.5% in the case of highly stable at high temperatures luciferase from Photorhabdus luminescens. An effect of the DnaKJE-ClpB bichaperone system on the efficiency of TF-dependent refolding was investigated. The ClpB component of the bichaperone system was shown to negatively affect the process efficiency, that is, TF-dependent refolding of bacterial luciferases was found to be far more efficient in E. coli clpB::kan cell strains than in E. coli clpB+ strains.  相似文献   

7.
ClpB is a heat-shock protein from Escherichia coli with an unknown function. We studied a possible molecular chaperone activity of ClpB in vitro. Firefly luciferase was denatured in urea and then diluted into the refolding buffer (in the presence of 5 mM ATP and 0.1 mg/ml bovine serum albumin). Spontaneous reactivation of luciferase was very weak (less than 0.02% of the native activity) because of extensive aggregation. Conventional chaperone systems (GroEL/GroES and DnaK/DnaJ/GrpE) or ClpB alone did not reactivate luciferase under those conditions. However, ClpB together with DnaK/DnaJ/GrpE greatly enhanced the luciferase activity regain (up to 57% of native activity) by suppressing luciferase aggregation. This coordinated function of ClpB and DnaK/DnaJ/GrpE required ATP hydrolysis, although the ClpB ATPase was not activated by native or denatured luciferase. When the chaperones were added to the luciferase refolding solutions after 5-25 min of refolding, ClpB and DnaK/DnaJ/GrpE recovered the luciferase activity from preformed aggregates. Thus, we have identified a novel multi-chaperone system from E. coli, which is analogous to the Hsp104/Ssa1/Ydj1 system from yeast. ClpB is the only known bacterial Hsp100 protein capable of cooperating with other heat-shock proteins in suppressing and reversing protein aggregation.  相似文献   

8.
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that bind denatured proteins in vitro, thereby facilitating their subsequent refolding by ATP-dependent chaperones. The mechanistic basis of this refolding process is poorly defined. We demonstrate that substrates complexed to sHsps from various sources are not released spontaneously. Dissociation and refolding of sHsp bound substrates relies on a disaggregation reaction mediated by the DnaK system, or, more efficiently, by ClpB/DnaK. While the DnaK system alone works for small, soluble sHsp/substrate complexes, ClpB/DnaK-mediated protein refolding is fastest for large, insoluble protein aggregates with incorporated sHsps. Such conditions reflect the situation in vivo, where sHsps are usually associated with insoluble proteins during heat stress. We therefore propose that sHsp function in cellular protein quality control is to promote rapid resolubilization of aggregated proteins, formed upon severe heat stress, by DnaK or ClpB/DnaK.  相似文献   

9.
The AAA+ chaperone ClpB solubilizes in cooperation with the DnaK chaperone system aggregated proteins. The mechanistic features of the protein disaggregation process are poorly understood. Here, we investigated the mechanism of ClpB/DnaK-dependent solubilization of heat-aggregated malate dehydrogenase (MDH) by following characteristics of MDH aggregates during the disaggregation reaction. We demonstrate that disaggregation is achieved by the continuous extraction of unfolded MDH molecules and not by fragmentation of large MDH aggregates. These findings support a ClpB-dependent threading mechanism as an integral part of the disaggregation reaction.  相似文献   

10.
Small heat shock proteins (sHSPs) and the related alpha-crystallins are ubiquitous chaperones linked to neurodegenerative diseases, myopathies, and cataract. To better define their mechanism of chaperone action, we used hydrogen/deuterium exchange and mass spectrometry (HXMS) to monitor conformational changes during complex formation between the structurally defined sHSPs, pea PsHsp18.1, and wheat TaHsp16.9, and the heat-denatured model substrates malate dehydrogenase (MDH) and firefly luciferase. Remarkably, we found that even when complexed with substrate, the highly dynamic local structure of the sHSPs, especially in the N-terminal arm (>70% exchange in 5 s), remains unchanged. These results, coupled with sHSP-substrate complex stability, indicate that sHSPs do not adopt new secondary structure when binding substrate and suggest sHSPs are tethered to substrate at multiple sites that are locally dynamic, a feature that likely facilitates recognition and refolding of sHSP-bound substrate by the Hsp70/DnaK chaperone system. Both substrates were found to be stabilized in a partially unfolded state that is observed only in the presence of sHSP. Furthermore, peptide-level HXMS showed MDH was substantially protected in two core regions (residues 95-156 and 228-252), which overlap with the MDH structure protected in the GroEL-bound MDH refolding intermediate. Significantly, despite differences in the size and structure of TaHsp16.9-MDH and PsHsp18.1-MDH complexes, peptide-level HXMS patterns for MDH in both complexes are virtually identical, indicating that stabilized MDH thermal unfolding intermediates are not determined by the identity of the sHSP.  相似文献   

11.
Bacterial heat-shock proteins, ClpB and DnaK form a bichaperone system that efficiently reactivates aggregated proteins. ClpB undergoes nucleotide-dependent self-association and forms ring-shaped oligomers. The ClpB-assisted dissociation of protein aggregates is linked to translocation of substrates through the central channel in the oligomeric ClpB. Events preceding the translocation step, such as recognition of aggregates by ClpB, have not yet been explored, and the location of the aggregate-binding site in ClpB has been under discussion. We investigated the reactivation of aggregated glucose-6-phosphate dehydrogenase (G6PDH) by ClpB and its N-terminally truncated variant ClpBDeltaN in the presence of DnaK, DnaJ, and GrpE. We found that the chaperone activity of ClpBDeltaN becomes significantly lower than that of the full-length ClpB as the size of G6PDH aggregates increases. Using a "substrate trap" variant of ClpB with mutations of Walker B motifs in both ATP-binding modules (E279Q/E678Q), we demonstrated that ClpBDeltaN binds to G6PDH aggregates with a significantly lower affinity than the full-length ClpB. Moreover, we identified two conserved acidic residues at the surface of the N-terminal domain of ClpB that support binding to G6PDH aggregates. Those N-terminal residues (Asp-103, Glu-109) contribute as much substrate-binding capability to ClpB as the conserved Tyr located at the entrance to the ClpB channel. In summary, we provided evidence for an essential role of the N-terminal domain of ClpB in recognition and binding strongly aggregated proteins.  相似文献   

12.
The cpn60 gene from Bacillus strain MS, which is highly homologous to Bacillus stearothermophilus, was cloned. Cpn60 with a hexahistidine affinity tag (His)(6) fused to its C-terminus (cpn60-(His)(6)) was overproduced in Escherichia coli. Cpn60-(His)(6) was expressed in a soluble form in E. coli. and purified to homogeneity in a single step by nickel chelate affinity chromatography. Cpn60-(His)(6) formed a tetradecamer and had ATPase activity. Cpn60-(His)(6) mediated refolding of guanidine hydrochloride unfolded pig heart malic dehydrogenase (MDH) and Thermus flavus MDH at 25 and 70 degrees C, respectively, in an ATP-dependent manner. In addition, cpn60-(His)(6) prevented heat denaturation of pig heart MDH and T. flavus MDH at 30 and 80 degrees C, respectively, in an ATP-dependent manner. Therefore, cpn60-(His)(6) facilitates protein refolding and prevents heat denaturation of proteins across a wide temperature range.  相似文献   

13.
The refolding of thermally inactivated protein by ATP-independent trigger factor (TF) and ATP-dependent DnaKJE chaperones was comparatively analyzed. Heterodimeric (αβ) bacterial luciferases of Aliivibrio fischeri, Photobacterium leiognathi, and Vibrio harveyi as well as monomeric luciferases of Vibrio harveyi and Luciola mingrelica (firefly) were used as substrates. In the presence of TF, thermally inactivated heterodimeric bacterial luciferases refold, while monomeric luciferases do not refold. These observations were made both in vivo (Escherichia coli ΔdnaKJ containing plasmids with tig gene) and in vitro (purified TF). Unlike TF, the DnaKJE chaperone system refolds both monomeric and heterodimeric luciferases with equal efficiency.  相似文献   

14.
ClpB from Thermus thermophilus belongs to the Clp/Hsp100 protein family and reactivates protein aggregates in cooperation with the DnaK chaperone system. The mechanism of protein reactivation and interaction with the DnaK system remains unclear. ClpB possesses two nucleotide binding domains, which are essential for function and show a complex allosteric behavior. The role of the N-terminal domain that precedes the first nucleotide binding domain is largely unknown. We purified and characterized an N-terminal shortened ClpB variant (ClpBDeltaN; amino acids 140-854), which remained active in refolding assays with three different substrate proteins. In addition the N-terminal truncation did not significantly change the nucleotide binding affinities, the nucleotide-dependent oligomerization, and the allosteric behavior of the protein. In contrast casein binding and stimulation of the ATPase activity by kappa-casein were affected. These results suggest that the N-terminal domain is not essential for the chaperone function, does not influence the binding of nucleotides, and is not involved in the formation of intermolecular contacts. It contributes to the casein binding site of ClpB, but other substrate proteins do not necessarily interact with the N terminus. This indicates a substantial difference in the binding mode of kappa-casein that is often used as model substrate for ClpB and other possibly more suitable substrate proteins.  相似文献   

15.
The implementation of efficient technologies for the production of recombinant mammalian membrane receptors is an outstanding challenge in understanding receptor-ligand actions and the development of therapeutic antibodies. In order to improve the solubility of recombinant extracellular domains of human membrane receptors expressed in Escherichia coli, proteins were synthesized by an E. coli in vitro translation system supplemented with bacterial molecular chaperones, such as GroEL-GroES (GroEL/ES), Trigger factor (TF), a DnaK-DnaJ-GrpE chaperone system (DnaKJE), and/or a heat shock protein Hsp100, ClpB. The following three proteins that are prone to aggregation were examined: the extracellular domain (ECD) or the second immunoglobulin-like domain (IgII) of the human neurotrophin receptor TrkC (TrkC-ECD and TrkC-IgII), and the C-type lectin carbohydrate recognition domain of the human asialoglycoprotein receptor (ASGPR HI CRD). The cooperative chaperone system including GroEL/ES, DnaKJE and ClpB had a marked effect on the solubility of TrkC-ECD and TrkC-IgII, and the GroEL/ES-DnaKJE-TF chaperone system was more effective for TrkC-IgII. The GroEL/ES-DnaKJE-TF chaperone network increased the yield of soluble ASGPR HI CRD. The present findings demonstrate that E. coli molecular chaperones are useful in improving the yield of soluble recombinant extracellular domains of human membrane receptors in an E. coli expression system.  相似文献   

16.
Mitochondrial DNA synthesis is a thermosensitive process in the yeast Saccharomyces cerevisiae. We found that restoration of mtDNA synthesis following heat treatment of cells is dependent on reactivation of the mtDNA polymerase Mip1p through the action of a mitochondrial bichaperone system consisting of the Hsp70 system and the Hsp78 oligomeric protein. mtDNA synthesis was inefficiently restored after heat shock in yeast lacking either functional component of the bichaperone system. Furthermore, the activity of purified Mip1p was also thermosensitive; however, the purified components of the mitochondrial bichaperone system (Ssc1p, Mdj1p, Mge1p, and Hsp78p) were able to protect its activity under moderate heat shock conditions as well as to reactivate thermally inactivated Mip1p. Interestingly, the reactivation of endogenous Mip1p contributed more significantly to the restoration of mtDNA synthesis than did import of newly synthesized Mip1p from the cytosol. These observations suggest an important link between function of mitochondrial chaperones and the propagation of mitochondrial genomes under ever-changing environmental conditions.  相似文献   

17.
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents.  相似文献   

18.
The small heat shock proteins (sHSPs) recently have been reported to have molecular chaperone activity in vitro; however, the mechanism of this activity is poorly defined. We found that HSP18.1, a dodecameric sHSP from pea, prevented the aggregation of malate dehydrogenase (MDH) and glyceraldehyde-3-phosphate dehydrogenase heated to 45 degrees C. Under conditions in which HSP18.1 prevented aggregation of substrates, size-exclusion chromatography and electron microscopy revealed that denatured substrates coated the HSP18.1 dodecamers to form expanded complexes. SDS-PAGE of isolated complexes demonstrated that each HSP18.1 dodecamer can bind the equivalent of 12 MDH monomers, indicating that HSP18.1 has a large capacity for non-native substrates compared with other known molecular chaperones. Photoincorporation of the hydrophobic probe 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) into a conserved C-terminal region of HSP18.1 increased reversibly with increasing temperature, but was blocked by prior binding of MDH, suggesting that bis-ANS incorporates proximal to substrate binding regions and that substrate-HSP18.1 interactions are hydrophobic. We also show that heat-denatured firefly luciferase bound to HSP18.1, in contrast to heat-aggregated luciferase, can be reactivated in the presence of rabbit reticulocyte or wheat germ extracts in an ATP-dependent process. These data support a model in which sHSPs prevent protein aggregation and facilitate substrate refolding in conjunction with other molecular chaperones.  相似文献   

19.
A 4-kb fragment encoding methanol dehydrogenase (MDH) (EC 1.1.99.8) fromMethylosinus trichosporium OB3b has been cloned, with lambda gt11, and expressed inEscherichia coli K12. Organisms infected with recombinant phage express a fusion protein of bigger molecular weight than the purified MDH protein fromM. trichosporium OB3b. Subcloning of this fragment into pUC18 allowed identification of a recombinant plasmid, pCIT328, which contained a 2.1-kb fragment that expressed a protein that comigrated with purified MDH on polyacrylamide gels and cross-reacted with the antibody, indicative that the full MDH structural protein was encoded. This fragment also hybridized with an appropriate sized fragment fromM. trichosporium OB3b total DNA.  相似文献   

20.
Hsp100/Clp proteins are key players in the protein quality control network of prokaryotic cells and function in the degradation and refolding of misfolded or aggregated proteins. Here we report the identification of a new class of Hsp100/Clp proteins, termed ClpV (virulent strain), that are present in bacteria interacting with eukaryotic cells, including human pathogens. The ClpV proteins are most similar to ClpB proteins within the Hsp100/Clp family, but cluster in a separate phylogenetic tree with a remarkable distance to ClpB. ClpV representatives from Salmonella typhimurium and enteropathogenic Escherichia coli form oligomeric assemblies and display ATP hydrolysis rates comparable to ClpB. However, unlike ClpB, both ClpV proteins failed to solubilize aggregated proteins. This lack of disaggregation activity correlated with the inability of ClpB model substrates to stimulate the ATPase activity of ClpV proteins, indicating differences in substrate selection. Furthermore, we show that clpV genes are generally organized in a conserved gene cluster, encoding a potential secretion system, and we demonstrate that increased levels of a dominant negative variant of either S. typhimurium or Yersinia pseudotuberculosis ClpV strongly reduce the ability of these pathogenic bacteria to invade epithelial cells. We propose a role of this novel and unique class of AAA+ proteins in bacteria-host cell interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号