首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dominant hemimelia(Dh) mutation causes various developmental abnormalities in mice. Most -Dh/+ males, crosses between DDD females and DH-Dh/+ males, have lethal abnormalities during the neonatal period. This is a consequence of synergism among three independent gene loci; that is, theDh allele on chromosome (Chr) 1, the DDD allele on an X Chr-linked locus, and a Y Chr-linked locus in some strains. With regard to the Y Chr derived fromMus musculus musculus (M. m. musculus), the Y Chrs of C57BL/6J and BALB/cA caused lethality, but the Y Chr of C3H/HeJ did not, suggesting that not allM. m. musculus Y Chrs are the same. In the present study, whether Y Chrs derived fromM. m. domesticus andM. m. castaneus could cause lethality was investigated. Among seven inbred strains, including AKR/J, DDD, RF/J, SJL/J, SWR/J, TIRANO/Ei, and CAST/Ei, Y Chrs of AKR/ J, DDD, SJL/J, SWR/J, and TIRANO/Ei caused lethality, but Y Chrs of RF/J and CAST/Ei did not. It was unlikely that the mitochondrial genome of the DDD strain contributed to the lethality. The X Chr-linked locus could not compensate for the role of the Y Chr-linked locus. These results suggest that not allM. m. domesticus Y Chrs are the same.  相似文献   

2.
Antigenic specificities of complement factor H from mice were studied serologically. In addition to previously reported allotypes, referred to as H.1 and H.2, a new allotype of complement factor H, H.3, was identified in the BFM/2Ms strain derived from European wild mice. Using three different alloantisera raised against the various mouse factor H allotype, a serological survey of the common laboratory strains and wild-derived strains of Mus musculus and its relatives, Mus spretus, Mus spretoides, and Mus spicilegus was carried out. All of the common laboratory strains examined in this survey had the H.1 allotype except for STR/N which had H.2. The geographical distributions of factor H allotypes in M. musculus were specific to the subspecies. Mice derived from Mus musculus domesticus and Mus musculus castaneus had the H.1 allotype. Mice derived from M. m. musculus, Mus musculus bactrianus, and Mus musculus molossinus had the H.2 allotype. Only BFM/2Ms and BFM/1Mpl strains derived from M. m. domesticus had the novel H.3 allotype. Sera of mice from strains derived from M. spretoides and M. spicilegus cross-reacted with H.2-specific antiserum, and those from M. spretus cross-reacted with H.3-specific antiserum.  相似文献   

3.
Mouse chromosomes, with the exception of the Y chromosome, are telocentric. The telomere at the p-arm is separated from the centromere by the tL1 sequence and TLC tandem repeats. A previous report showed that the TLC array was also conserved in other strains of the subgenus Mus. These results suggest that the TLC arrays promote the stable evolutionary maintenance of a telocentric karyotype in the subgenus Mus. In this study, we investigated the degree of conservation of TLC arrays among a variety of wild-derived inbred strains, all of which are descendants of wild mice captured in several areas of the world. Genomic PCR analysis indicates that the sequential order of telomere-tL1 is highly conserved in all strains, whereas tL1-TLC is not. Next, Southern blot analysis of DNAs isolated from a panel of mouse subspecies showed both Mus musculus domesticus and Mus musculus castaneus subspecies possess TLC arrays. Unexpectedly, this repeat appears to be lost in almost all Mus musculus musculus and Mus musculus molossinus subspecies, which show a clear geographic divide. These results indicate that either other unknown sequences were replaced by the TLC repeat or almost all M. m. musculus and M. m. molossinus subspecies do not have any sequence between the telomere and minor satellites. Our observation suggests that the TLC array might be evolutionarily unstable and not essential for murine chromosomal conformation. This is the first example of the subspecies-specific large genome alterations in mice.  相似文献   

4.
Twenty-eight biochemical markers were examined in three strains (Mol-A, Mol-N and Mol-T) derived from the Japanese wild mouse, Mus musculus molossinus, as well as five laboratory strains, Mus musculus musculus. The Mol strains showed specific alleles at as many as 12 loci. These findings emphasize that the Mol strains have significance in future genetic and developmental studies.  相似文献   

5.
The major urinary protein (MUP) complex of normal inbred laboratory mice (Mus musculus musculus) is a family of three electrophoretically distinguishable components, designated 1, 2, and 3 in order of increasing anodal mobility at pH 5.5. Components 1 and 2 are under the control of a single genetic locus; the MUP complex of a given inbred strain consists of component 1 or 2 plus component 3. In this study, the urinary protein of two subspecies of Asian wild mice, Mus musculus molossinus (originally trapped in Japan) and Mus musculus castaneus (originally trapped in Thailand), was examined electrophoretically and ultracentrifugally. The MUP complex of male M. m. molossinus and M. m. castaneus sedimented at approximately the same rate as that of M. m. musculus (s 20 =2.0?2.2S). It consisted of a “fast” (i.e., more anodal than component 3) and an “intermediate” component plus one or more “origin” (i.e., less anodal than component 1) components. The “fast” and “origin” components were isolated chromatographically, and NH2-terminal sequences spanning the first 36 residues were determined. Comparison with the NH2-terminal sequences determined for components 1, 2, and 3 isolated from the urine of BALB/c or C57BL/6 mice revealed, except for a single replacement at position 6 in the “origin” component of M. m. molossinus, no differences among the 1, 2, “origin”, and “fast” components. Component 3 was highly homologous but differed from component 1 at nine positions; its residue at position 6 was the same as that of the M. m. molossinus “origin” component.  相似文献   

6.
Faroe house mice are a ‘classic’ system of rapid and dramatic morphological divergence highlighted by J. S. Huxley during the development of the Modern Synthesis. In the present study, we characterize these charismatic mice using modern molecular techniques, examining specimens from all Faroe islands occupied by mice. The aims were to classify the mice within the modern house mouse taxonomy (i.e. as either Mus musculus domesticus or Mus musculus musculus) using four molecular markers and a morphological feature, and to examine the genetic diversity and possible routes of colonization using mitochondrial (mt) control region DNA sequences and microsatellite data (15 loci). Mice on the most remote islands were characterized as M. m. domesticus and exhibited exceptionally low genetic diversity, whereas those on better connected islands were more genetically diverse and had both M. m. musculus and M. m. domesticus genetic elements, including one population which was morphologically M. m. musculus‐like. The mtDNA data indicate that the majority of the mice had their origins in south‐western Norway (or possibly southern Denmark/northern Germany), and probably arrived with the Vikings, earlier than suggested by Huxley. The M. m. musculus genetic component appears to derive from recent mouse immigration from Denmark. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 471–482.  相似文献   

7.
Japanese house mice (Mus musculus molossinus) are thought to be a hybrid lineage derived from two prehistoric immigrants, the subspecies M. m. musculus of northern Eurasia and M. m. castaneus of South Asia. Mice of the western European subspecies M. m. domesticus have been detected in Japanese ports and airports only. We examined haplotype structuring of a 200 kb stretch on chromosome 8 for 59 mice from throughout Eurasia, determining short segments (≈ 370–600 bp) of eight nuclear genes (Fanca, Spire2, Tcf25, Mc1r, Tubb3, Def8, Afg3l1 and Dbndd1) which are intermittently arranged in this order. Where possible we identified the subspecies origin for individual gene alleles and then designated haplotypes for concatenated alleles. We recovered 11 haplotypes among 19 Japanese mice examined, identified either as ‘intact’ haplotypes derived from the subspecies musculus (57.9%), domesticus (7.9%), and castaneus (2.6%), or as ‘recombinant’ haplotypes (31.6%). We also detected recombinant haplotypes unique to Sakhalin. The complex nature of the recombinant haplotypes suggests ancient introduction of all three subspecies components into the peripheral part of Eurasia or complicated genomic admixture before the movement from source areas. ‘Intact’domesticus and castaneus haplotypes in other Japanese wild mice imply ongoing stowaway introductions. The method has general utility for assessing the history of genetic admixture and for disclosing ongoing genetic contamination.  相似文献   

8.
House mice (Mus musculus) are human commensals and have served as a primary model in biomedical, ecological and evolutionary research. Although there is detailed knowledge of the biogeography of house mice in Europe, little is known of the history of house mice in China, despite the fact that China encompasses an enormous portion of their range. In the present study, 535 house mice caught from 29 localities in China were studied by sequencing the mitochondrial D‐loop and genotyping 10 nuclear microsatellite markers distributed on 10 chromosomes. Phylogenetic analyses revealed two evolutionary lineages corresponding to Mus musculus castaneus and Mus musculus musculus in the south and north, respectively, with the Yangtze River approximately representing the boundary. More detailed analyses combining published sequence data from mice sampled in neighbouring countries revealed the migration routes of the two subspecies into China: M. m. castaneus appeared to have migrated through a southern route (Yunnan and Guangxi), whereas M. m. musculus entered China from Kazakhstan through the north‐west border (Xinjiang). Bayesian analysis of mitochondrial sequences indicated rapid population expansions in both subspecies, approximately 4650–9300 and 7150–14 300 years ago for M. m. castaneus and M. m. musculus, respectively. Interestingly, the migration routes of Chinese house mice coincide with the colonization routes of modern humans into China, and the expansion times of house mice are consistent with the development of agriculture in southern and northern China, respectively. Finally, our study confirmed the existence of a hybrid zone between M. m. castaneus and M. m. musculus in China. Further study of this hybrid zone will provide a useful counterpart to the well‐studied hybrid zone between M. m. musculus and Mus musculus domesticus in central Europe.  相似文献   

9.
Quinacrine (Q-band) and centromeric heterochromatin (C-band) patterns of metaphase chromosomes of two subspecies of Mus musculus were compared. M. m. musculus (the laboratory mouse) and M. m. molossinus (a subspecies from Southeast Asia) had similar Q-band patterns along the length of the chromosomes, but differences were observed in the centromeric region of some chromosomes. The two subspecies had very different distributions of C-band material. Antibodies to 5-methylcytosine were bound to regions of the chromosome corresponding to the C-bands in each animal. These findings support the idea that satellite DNA, which is concentrated in the C-band region, changes more quickly than bulk DNA. The interfertility of these two subspecies permits the development of a musculus strain carrying normal marker chromosomes for genetic studies.  相似文献   

10.
We investigated the distributions and routes of colonization of two commensal subspecies of house mouse in Norway: Mus musculus domesticus and M. m. musculus. Five nuclear markers (Abpa, D11 cenB2, Btk, SMCY and Zfy2) and a morphological feature (tail length) were used to differentiate the two subspecies and assess their distributions, and mitochondrial (mt) D‐loop sequences helped to elucidate their colonization history. M. m. domesticus is the more widespread of the two subspecies, occupying the western and southern coast of Norway, while M. m. musculus is found along Norway’s southeastern coast and east from there to Sweden. Two sections of the hybrid zone between the two subspecies were localized in Norway. However, hybrid forms also occur well away from that hybrid zone, the most prevalent of which are mice with a M. m. musculus‐type Y chromosome and an otherwise M. m. domesticus genome. MtDNA D‐loop sequences of the mice revealed a complex phylogeography within M. m. domesticus, reflecting passive human transport to Norway, probably during the Viking period. M. m. musculus may have colonized earlier. If so, that leaves open the possibility that M. m. domesticus replaced M. m. musculus from much of Norway, with the widely distributed hybrids a relict of this process. Overall, the effects of hybridization are evident in house mice throughout Norway.  相似文献   

11.
The severe virulence of Toxoplasma gondii in classical laboratory inbred mouse strains contradicts the hypothesis that house mice (Mus musculus) are the most important intermediate hosts for its transmission and evolution because death of the mouse before parasite transmission equals death of the parasite. However, the classical laboratory inbred mouse strains (Mus musculus domesticus), commonly used to test Toxoplasma strain differences in virulence, do not capture the genetic diversity within Mus musculus. Thus, it is possible that Toxoplasma strains that are severely virulent in laboratory inbred mice are avirulent in some other mouse sub-species. Here, we present insight into the responses of individual mouse strains, representing strains of the genetically divergent Mus musculus musculus, Mus musculus castaneus and Mus musculus domesticus, to infection with individual clonal and atypical Toxoplasma strains. We observed that, unlike M. m. domesticus, M. m. musculus and M. m. castaneus are resistant to the clonal Toxoplasma strains. For M. m. musculus, we show that this is due to a locus on chromosome 11 that includes the genes that encode the interferon gamma (IFNG)-inducible immunity-related GTPases (Irgs) that can kill the parasite by localising and subsequently vesiculating the parasitophorous vacuole membrane. However, despite the localization of known effector Irgs to the Toxoplasma parasitophorous vacuole membrane, we observed that some atypical Toxoplasma strains are virulent in all the mouse strains tested. The virulence of these atypical strains in M. m. musculus could not be attributed to individual rhoptry protein 5 (ROP5) alleles, a secreted parasite pseudokinase that antagonises the canonical effector Irgs and is indispensable for parasite virulence in laboratory inbred mice (M. m. domesticus). We conclude that murine resistance to Toxoplasma is modulated by complex interactions between host and parasite genotypes and may be independent of known effector Irgs on murine chromosome 11.  相似文献   

12.
A 7-bp deletion in the Cd4 gene, present in the strain MOLF/Ei of Mus musculus molossinus and absent in laboratory mouse strains (Mus musculus musculus), provided the means to distinguish the parental origin of the Cd4 alleles expressed in single cells of F1 (AKR × MOLF/Ei) and F1 (Balb/C × MOLF/Ei) hybrids. Single-cell RT-PCR showed that the individual CD4+ lymphocyte expresses either the maternal or the paternal Cd4 allele, never both. In situ hybridization proved that Cd4 alleles replicate asynchronously, as expected in the case of genes expressed monoallelically.  相似文献   

13.
A serological survey using alloantisera specific for the H-2 class I antigens in Japanese wild mice,Mus musculus molossinus, revealed a high frequency of the H-2Kf antigen. This antigen has also been found in European wild mice,M. m. domesticus andM. m. musculus. In this survey, the H-2Kf antigen was characterized through the use of ten newly isolated monoclonal antibodies raised against cells of a Japanese wild mouse, and by Southern blot analysis using anH-2K locus-specific probe which hybridizes with the 3′ end of the gene. The serologically identified H-2Kf antigens revealed several minor variations in reactivities to the monoclonal antibodies. However, all the antigens examined could be clearly separated into two types with respect to the restriction fragment length polymorphism (RFLP) pattern. The first type, found together with a single, characteristic RFLP pattern, was always associated with the presence of reactivity to one particular monoclonal antibody, MS54. The second type, found to represent different RFLP patterns, is associated with the absence of reactivity to MS54. This concordance between the presence of an antigenic determinant and a particular RFLP was observed not only withinMus musculus subspecies but also in a different species:M. spretus, carrying the same antigenic determinant, gave an identical RFLP to that of the other MS54-positiveMus musculus subspecies. The data suggest that the antigenic determinant specific for MS54 is an ancient polymorphic structure which has survived the long period of diversification ofMus species (approximately 2–3 million years) without alteration, and is associated with a stable DNA structure at the 3′ end of theH-2K gene.  相似文献   

14.
MSM/Ms is an inbred mouse strain established from the Japanese wild mouse, Mus musculus molossinus, which has been phylogenetically distinct from common laboratory mouse strains for about 1 million years. The nucleotide substitution rate between MSM/Ms and C57BL/6 is estimated to be 0.96%. MSM/Ms mice display unique characteristics not observed in the commonly used laboratory strains, including an extremely low incidence of tumor development, high locomotor activity, and resistance to high-fat-diet-induced diabetes. Thus, functional genomic analyses using MSM/Ms should provide a powerful tool for the identification of novel phenotypes and gene functions. We report here the derivation of germline-competent embryonic stem (ES) cell lines from MSM/Ms blastocysts, allowing genetic manipulation of the M. m. molossinus genome. Fifteen blastocysts were cultured in ES cell medium and three ES lines, Mol/MSM-1, -2, and -3, were established. They were tested for germline competency by aggregation with ICR morulae and germline chimeras were obtained from all three lines. We also injected Mol/MSM-1 ES cells into blastocysts of ICR or C57BL/6 × BDF1 mice and found that blastocyst injection resulted in a higher production rate of chimeric mice than did aggregation. Furthermore, Mol/MSM-1 subclones electroporated with a gene trap vector were also highly efficient at producing germline chimeras using C57BL/6 × BDF1 blastocyst injection. This Mol/MSM-1 ES line should provide an excellent new tool allowing the genetic manipulation of the MSM/Ms genome.  相似文献   

15.
We have already developed nine B10.MOL congenic strains carrying H-2 haplotypes derived from Japanese wild mice, Mus musculus molossinus, with the C57BL/10 genetic background. To obtain monoclonal antibodies against the H-2 antigen of the Japanese wild mouse, we carried out cell fusion using spleen cells from the animal immunized with one of the B10.MOL strains, B10.MOL-SGR (H-2 wm7). As a result, 19 hybridomas producing monoclonal antibodies were produced. Analysis with the intro-H-2 recombinants derived from B10.MOL-SGR indicated that 8 of them reacted with the class I and II with the class II molecule. The class I antibodies were tested for their cross -reactivities on wild mice and on the panels of standard inbred and B10.MOL strains. Most of the antibodies reacted with both the Japanese wild mice and the other subspecies, including standard inbred, while two antibodies highly specific for the donor H-2K region reacted with only three wild-derived mice, two M. m. molossinus from Anj o and Shizuoka, Japan, and one M. m. domesticus from Pigeon, Canada. In addition, all of the other four antibodies reactive with the K antigen of B10.MOL-SGR also reacted with the same three wild mice. The wild mice belonging to different subspecies might share very similar H-2K antigenic determinants in spite of their genetic and geographical remoteness.  相似文献   

16.
Genetic distance measures between the laboratory mouse strains C57BL/6J and RF/J and the wild-origin Mus musculus mouse strains CAST/Ei, MOLF/Ei, POSCH I, and CZECH II were estimated by allelic patterns revealed by RFLP analysis. These results suggest phylogenetic relationships indicating that the mouse strains related to the subspecies M.m. domesticus (RF/J, POSCH I and C57BL/6J) are more closely related to the CAST/Ei strain (derived from M.m. castaneus) than to the strains CZECH II (M.m. musculus) and MOLF/Ei (M.m. molossinus). Furthermore, the hybrid strain C57BL/6J is more closely related to POSCH I (M.m. poschiavinus) than to RF/J as calculated by the method distance measures of Cavalli-Sforza and Edwards (Evolution 21,550, 1967), Nei's minimum (Am. Natural. 106,283, 1972) and unbiased minimum (Genetics 89,583, 1978), Edwards (Biometrics 27,873, 1971; Genetic Distance, p. 41, 1974) and Rogers modified (1986).  相似文献   

17.
Tcrg gene polymorphism was investigated by Southern blot analysis on a panel of laboratory and wild mouse strains using a set of probes which identify all known Tcrg-V and -C genes. Only three haplotypes are found in laboratory mice: gA, gB, and gC which are represented by BALB/c, AKR, and DBA/2 prototypes respectively. gA and gC haplotypes are the most frequent among laboratory mice whereas gB is poorly represented. Seven new haplotypes are described among 23 wild mice corresponding to four Mus musculus subspecies (Mus mus domesticus, castaneus, musculus, and molossinus). However, only a few new alleles of individual genes are observed. Tcrg-V genes located at the 5 end of the Tcrg locus (V7 and V4) appear to be nonpolymorphic whereas two Tcrg-V3,-V5,-V6,-C4 and three Tcr-V1,-V2,-C1,-C2, and -C3 specific restriction fragment length polymorphisms are detected. These results indicate a relatively high degree of conservation of Tcrg genes as compared to other members of the immunoglobulin (Ig) gene family and might be related to the specificity and function of T cells. Several of the new haplotypes described here result from point mutations in noncoding Tcrg-V or -C gene-flanking regions. Recombinations may have also participated in the evolution of the Tcrg locus. Finally, these new Tcrg haplotypes are unequally distributed among the four M. m. subspecies and support the idea that the gA and gC haplotypes found in laboratory mice are inherited from M. m. domesticus whereas gB might originated from asian subspecies (castaneus, musculus or molossinus).  相似文献   

18.
When the Y chromosome of the laboratory inbred mouse strain C57BL/6 (B6) is replaced by the Y of certain strains of Mus musculus domesticus, testis determination fails and all XY fetuses develop either as hermaphrodites or XY females (XY sex reversal). This suggests the presence of at least two alleles of Sry, the male-determining gene on the Y:M. m. domesticus and B6. The B6 Y chromosome is derived from the Japanese house mouse, M. m. molossinus and therefore carries a molossinus Sry allele. As a first step to determine how the molossinus Sry allele evolved, its distribution pattern was determined in wild mice. The cumulative data of 96 M. musculus samples obtained from 58 geographical locations in Europe, North Africa, and Asia show the molossinus Sry allele is restricted to Japan and the neighboring Asian mainland and confirm that Japanese M. m. molossinus mice were derived in part from a race of M. m. musculus from Korea or Manchuria. Sry polymorphisms, as illustrated by the molossinus Sry allele, can serve as molecular markers for studies on the evolution of wild M. musculus populations and can help determine the role sex determination plays in speciation.   相似文献   

19.
We tested 96 microsatellites and 10 single nucleotide polymorphisms for their allelic distribution in two subspecies of the house mouse, Mus musculus musculus and M. m. domesticus. Sixty‐two microsatellites discriminated strain‐specific differences among nine wild‐derived ‘musculus’ and ‘domesticus’ and three ‘classical’ laboratory strains. For efficient genotyping, we optimized multiplex conditions using five microsatellites per polymerase chain reaction. All 10 single nucleotide polymorphisms were also optimized for simultaneous analysis in one reaction using SNaPshot multiplex. The uniform distribution of markers on autosomes and on the X chromosome makes these panels potentially useful tools for quantitative trait loci mapping of wild house mice.  相似文献   

20.
Genetic and structural analyses of the mouse genes encoding constant region of immunoglobulin subclasses (Igh-C) have shown that recombination is rare within this cluster which is inherited as a set designated the Igh haplotype. Recent molecular analyses have demonstrated that either DNA exchanges or gene duplications have probably occurred during the evolution of this set of genes. In order to assess the generality of the duplication processes, the presence and expression of two allelic forms of the Igh-1 (2a) gene (Igh-1 a and Igh-1 b) were examined in a large panel of wild mice belonging to Mus musculus domesticus and Mus musculus musculus species. Our data indicate that certain M. m. domesticus animals and most animals in the M. m. musculus group coexpress the two allelic forms of Igh-1. Moreover, genetic studies show that these two immunoglobulin types are encoded by tandemly arranged genes. We propose that wild mice, from which laboratory mice are derived, carry three isotypic 2 genes (Igh-1 a, Igh-1b, Igh-3), and these have given rise to the two isotypes seen in laboratory strains by a deletion/insertion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号