首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 有效结合分子对接预测和表面等离子体共振实验评价技术,获得亲和力更强、序列最短的最优适配体。方法 针对前期筛选出的靶向蓖麻毒素的3条80 nt单链DNA适配体(L14、P3、L7),在明确各自二维随机区茎环序列与靶蛋白结合能力的基础上,以H-DOCK分子对接为指导,分别确定蓖麻毒素适配体随机区的最短结合单元,从而构建两端延长步进序列群,以表面等离子体共振技术测定序列群序列的亲和力和动力学参数,明确适配体的结合关键结构,从而筛选得到最优适配体。结果 3条全长适配体的随机区适配体L14r、P3r、L7r均可形成一定的茎环结构,其中L14r较L14的亲和力增强9倍、L7r增强2倍、P3r基本不变。对随机区适配体和蓖麻毒素进行分子对接,结果显示,L14r、P3r、L7r的对接分数值皆优于阴性序列40T,结合关键氨基酸个数分别为11、8、9个,存在距离小于5 ?的预测结合位点分别为20、12、15个,具有良好的与蓖麻毒素的结合能力。进一步明确了蓖麻毒素活性口袋所容纳的适配体最短结合单元L14rm、P3rm、L7rm的序列构成,在此基础上构建出两端延长步进序列群。针对该步进群,基于结合关键氨基酸个数、结合位点个数、对接得分等参数的变化和表面等离子体共振测定结果筛选出最优适配体。所获得的最优适配体L14rm、L7rm-2亲和力继续增强了1~2倍。结论 随机区适配体能有效地与蓖麻毒素结合,较之全长适配体亲和力更强,分子对接结合步进序列群设计,仅使用17条序列,便有效获得了3条最优适配体并明确其结合作用。3条结合蓖麻毒素的最优适配体——L14rm、P3r、L7rm-2的KD值分别为(64±30)、(167±19)、(120±1)nmol/L,亲和力提高到全长适配体的14、1、4倍。  相似文献   

2.
Deleted forms of ricin B chain (RTB) containing only one of the two galactose binding sites were produced inE. coli and targeted to the periplasm by fusion to theompA orompF signal sequences. The proteins were then isolated from the periplasm and their sugar binding properties assessed. Previous studies investigating the properties of such proteins produced inXenopus laevis oocytes suggested that deleted forms of RTB, when not glycosylated, retain their ability to bind simple sugars, unlike the full-length unglycosylated proteins. When produced inE. coli however we found that only one, EB733, of a number of deleted forms of RTB closely related to those previously produced inXenopus laevis oocytes, bound to simple sugars. All of the deletion forms of RTB were found to bind in the asialofetuin binding assay; an assay which has been previously utilized to measure binding of lectins to the terminal galactose residues of glycoprotein oligosaccharides. However, in contrast to glycosylated RTB, binding of the deletion mutants could be competed to only a small degree or not at all with galactose. The only deletion mutant observed to bind to free galactose when produced inE. coli corresponded closely to the complete domain 2 of RTB. It is assumed that this mutant forms a stable structure similar to that of the C-terminal domain in the full-length protein. The structural integrity of EB733 was not only suggested by its sugar binding properties and solubility but also by its consistently higher level of expression and the absence of any apparent susceptibility toE. coli proteases.Abbreviations RTA ricin toxin A chain - RTB ricin toxin B chain - ER endoplasmic reticulum - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - IPTG isopropyl -d-thiogalactopyranoside  相似文献   

3.
A rapid, reliable filtration method for [3H]oxotremorine binding to membranes of the cerebral cortex that allows the direct study of regulation by guanine nucleotides of muscarinic receptors was developed. [3H]Oxotremorine binds to cerebral cortex membranes with high affinity (K D, 1.9 nM) and low capacity (B max, 187 pmol/g protein). These sites, which represent only about 18% of those labeled with [3H]quinuclidinyl benzilate, constitute a population of GTP-sensitive binding sites. Association and dissociation binding experiments revealed a similar value ofK D (2.3 nM). Displacement studies with 1–4000 nM oxotremorine showed the existence of a second binding site of low affinity (K D, 1.2 M) and large capacity (B max, 1904 pmol/g protein). Gpp(NH)p, added in vitro, produced a striking inhibition of [3H]oxotremorine binding with an IC 50 of 0.3 M. Saturation assays, in the presence of 0.5 M Gpp(NH)p, revealed a non-competitive inhibition of the binding with little change in affinity. These results are discussed from the viewpoint of conflicting reports in the literature about guanine nucleotide regulation of muscarinic receptors in reconstituted systems and membranes from different tissues.  相似文献   

4.
Synaptosomal fractions were isolated from frog retina: a fraction enriched in photoreceptor terminals (P1) and a second one (P2) containing interneurons terminals. We compared the binding of [3H]glycine and [3H]strychine to membranes of these synaptosomes. The binding of both radioactive ligands was saturable and Na+-independent. [3H]Glycine bound to a single site in P1 and P2 synaptosomal fractions, with KD=12 and 82 nM and BMax=3.1 and 3.06 pmol/mg protein respectively. [3H]Strychnine bound to two sites in each one of the synaptosomal fractions. For P1 KD values were 3.9 and 18.7 nM, and BMax values were 1.1 and 7.1 pmol/mg protein, respecitively. Membranes from the P2 synaptosomal fraction showed KD's of 0.6 and 48 nM and BMax's of 0.4 and 4.5 pmol/mg. Specific [3H]glycine binding was displaced by -alanine, l-serine, d-serine and HA966, but not by strychnine 7-chlorokynurenic or 5,7-dichloro-kynurenic acids. Specific [3H]strychnine, binding was partially displaced by glycine and related aminoacids and totally displaced only by 2-NH2-strychnine. Our results indicate the presence of high affinity binding sites for glycine and strychnine in frog retinal synaptosomal membranes. The pharmacological binding pattern indicates the presence of the strychnine sensitive glycine receptor as well as other sites. These might not include the NMDA receptor-associated glycine site.  相似文献   

5.
The (Na+ + K+)-dependent ATPase exhibits substrate sites with both high affinity (K m near 1 µM) and low affinity (K m near 0.1 mM) for ATP. To permit the study of nucleotide binding to the high-affinity substrate sites of a canine kidney enzyme preparation in the presence as well as absence of MgCl2, the nonhydrolyzable - imido analog of ATP, AMP-PNP, was used in experiments performed at 0–4°C by a centrifugation technique. By this method theK D for AMP-PNP was 4.2 µM in the absence of MgCl2. Adding 50 µM MgCl2, however, decreased theK D to 2.2 µM; by contrast, higher concentrations of MgCl2 increased theK D until, with 2 mM MgCl2, theK D was 6 µM. The half-maximal effect of MgCl2 on increasing theK D occurred at approximately 1 mM. This biphasic effect of MgCl2 is interpreted as Mg2+ in low concentrations favoring AMP-PNP binding through formation at the high-affinity substrate sites of a ternary enzyme-AMP-PNP-Mg complex; inhibition of nucleotide binding at higher MgCl2 concentrations would represent Mg2+ acting through the low-affinity substrate sites. NaCl in the absence of MgCl2 increased AMP-PNP binding, with a half-maximal effect near 0.3 mM; in the presence of MgCl2, however, NaCl increased theK D for AMP-PNP. KCl decreased AMP-PNP binding in the presence or absence of MgCl2, but the simultaneous presence of a molar excess of NaCl abolished (or masked) the effect of KCl. ADP and ATP acted as competitors to the binding of AMP-PNP, although a substrate for the K+-dependent phosphatase reaction also catalyzed by this enzyme,p-nitrophenyl phosphate, did not. This lack of competition is consistent with formulations in which the phosphatase reaction is catalyzed at the low-affinity substrate sites.  相似文献   

6.
The role of tryptophan (Trp17) in immunoreactivity of P1, the diagnostically relevant peptide from a major allergen/antigen of Aspergillus fumigatus, was evaluated by chemically modifying tryptophanyl residue of P1. In BIAcore kinetic studies, unmodified P1 showed a 100-fold higher binding with ABPA (Allergic Bronchopulmonary Aspergillosis) patients’ IgG [KD (equilibrium dissociation constant) = 2.74 e−8 ± 0.13 M] than the controls’ IgG (KD = 2.97 e−6± 0.14 M), whereas chemically-modified P1 showed similar binding [KD patients’ IgG = 3.25 e−7± 0.16 M, KD controls’ IgG = 3.86 e−7± 0.19 M] indicating loss of specific immunoreactivity of P1 on tryptophan modification. Modified P1 showed loss of specific binding to IgE and IgG antibodies of ABPA patients in ELISA (Enzyme-Linked Immunosorbent Assay). The study infers that tryptophan residue (Trp17) is essential for immunoreactivity of P1.  相似文献   

7.
Aggregation occurs through hydrophobic interactions when a polypeptide chain refolds in non-native states or when genetic variants of biologically active proteins assume inappropriate conformations, as observed in the case of dysfunctional serpins. Here, using the molecular chaperone BiP from bovine liver microsomes, we characterized the hydrophobic nature of the peptide segment which is considered to be a site required for aggregation among a non-inhibitory serpin ovalbumin in a heat-denatured state. Screening of the peptide scan for binding of BiP showed that BiP-binding sites are mostly buried in the folded ovalbumin. When ovalbumin was heat-denatured, the denatured protein was recognized by the antibody that reacts with the hydrophobic surface of the amino-terminal segment of ovalbumin. This antibody significantly suppressed the binding of BiP to denatured ovalbumin. BiP also bound the immobilized peptide in an ATP-dependent manner and the peptide stimulated the ATPase activity of BiP with a K m of 165 μM and a V max of 0.4 nmol/min per milligram. Measurement of surface plasmon resonance showed that the peptide had a K d of 0.52 μM by BiP, lower than that for RCMLA (K d=1.1 μM) and even lower than that of the peptide P10K, PLSRTLSVAAKK, (K d=21 μM). These results demonstrate that the aggregation-prone site on heat-denatured ovalbumin has almost the same hydrophobic nature of interacting with the molecular chaperone BiP as the conventionally known peptides that bind to the Escherichia coli chaperone DnaK.  相似文献   

8.
Ricin, a plant toxin that binds to galactose-terminated glycoproteins and glycolipids on the cell surface, is internalized into endosomes before reaching the cytosol where it exerts its toxic activity. Fusion of early endosomes containing ricin or transferrin was demonstrated by using postnuclear supernatant fractions from K-562 cells. For both ligands, fusion depended on time, temperature, and ATP and was blocked by preincubation with N-ethylmaleimide. Some reagents that increase endosomal pH, the ionophores monensin and nigericin and the weak base chloroquine, stimulated the rate of fusion. However, bafilomycin A1, a specific inhibitor of vacuolar H+-ATPases, did not alter the rate of fusion. Moreover, it reduced or eliminated stimulation caused by monensin, nigericin, or chloroquine. Thus, the increased rate of fusion did not correlate with the higher lumenal pH of the endosome. The results suggest instead that fusion was stimulated by reagents that promoted accumulation of cations within the vesicles. © 1996 Wiley-Liss, Inc.
  • 1 This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    9.
    Summary The biological properties of an immunotoxin composed of an anti-CD6 monoclonal antibody conjugated to whole ricin, which had been modified so that the galactose-binding sites of the B chain were blocked (blocked ricin), were examined. Treatment of peripheral blood lymphocytes with anti-CD6-blocked ricin for a 24-h period prevented T cell proliferation induced by phytohemagglutinin in a dose-dependent manner with concentrations causing 50% inhibition (IC50) ranging from 5 pM to 30 pM. In contrast, treatment with either blocked ricin alone or with a control immunotoxin prepared with a B-cell-lineage-restricted monoclonal antibody gave IC50 values of approximately 2 nM. Although shortening the duration of the anti-CD6-blocked ricin treatment to as little as 3 h had little significant effect on the observed inhibition, T cell viability experiments demonstrated that the magnitude of immunotoxin-induced killing after a given time period is significantly higher when the target cells become activated. Thus, from the initial concentration of cells treated with anti-CD6-blocked ricin placed in culture, 40%–45% viable cells remained after 2 days yet only 3%–9% remained if phorbol ester and Ca2+ ionophore were added; activation of T cells after mock treatment using blocked ricin plus nonconjugated anti-CD6 demonstrated that this effect was not the result of activation alone. The toxicity of anti-CD6-blocked ricin was also measured by inhibition of PHA-induced clonogenic growth of normal T cells. Continuous treatment of the cells using anti-CD6-blocked ricin at 0.1 nM resulted in a surviving fraction of about 3.5 × 10–3; when immunotoxin treatment was for 24 h or less, the surviving fraction was only about 10–1. As an indication of the unique specificity of anti-CD6-blocked ricin, immunotoxin pretreatment of potential responder cells prevented the generation of allogeneic cytolytic T lymphocytes in mixed lymphocyte cultures yet had little effect on the generation of interleukin-2-induced lymphokine-activated killer cell activity. We conclude that anti-CD6-blocked ricin demonstrates a cellular specificity and potency that make it a highly promising anti-T cell reagent.  相似文献   

    10.
    The effects of several group-specific chemical reagents were examined upon the activity of the ATP-sensitive potassium (KATP) channel in the CRI-G1 insulin-secreting cell line. Agents which interact with the sulfhydryl moiety (including 1 mM N-ethylmaleimide (NEM), 1 mM 5,5-dithio-bis-(2-nitrobenzoic acid) (DNTB) and 1 mm o-iodobenzoate) produced an irreversible inhibition of KATP channel activity when applied to the intracellular surface of excised inside-out patches. This inhibition was substantially reduced when attempts were made to eliminate Mg2+ from the intracellular compartment. ATP 50 m and 100 m tolbutamide were each shown to protect against the effects of these reagents. The membrane impermeable DNTB was significantly less effective when applied to the external surface of outside-out patches. Agents which interact with peptide terminal amine groups and amino groups of lysine [1 mm methyl acetimidate and 1 mm trinitrobenzene sulfonic acid (TNBS)] and also the guanido group of arginine (1 mm methyl glyoxal) produced a Mg2+-dependent irreversible inhibition of KATP channel activity which could be prevented by ATP but not tolbutamide. The irreversible activation of the KATP channel produced by the proteolytic enzyme trypsin was prevented only when methyl glyoxal and methyl acetimidate were used in combination to inhibit channel activity. Radioligand binding studies showed that the binding of 3H glibenclamide was unaffected by any of the above agents with the exception of TNBS which completely inhibited binding with a EC50 of 307 ±6 m.These results provide evidence for the presence of essential sulfhydryl (possibly cysteine), and basic amino acid (possibly lysine and arginine) residues associated with the normal functioning of the KATP channel. Furthermore, we believe that the sulfhydryl group in question is situated at the internal surface of the membrane, possibly near to the channel pore.K.L. is a Wellcome Prize Student. This work was supported by the Wellcome Trust, MRC and BDA.  相似文献   

    11.
    The binding of 125I-labeled substance P (SP) to rat brain cortex membranes has been studied Under control conditions and in the presence of ethanol. The binding of SP at low concentrations (20–1000 pM) gave two components, one with a K D value of 80 pM and another one with a K D of 500 pM. The higher-affinity component is due to NK1 receptors, as confirmed by the inhibition Of the SP binding by the rodent NK1 specific agonist [Sar9 Met(O2)11]SP. Ethanol (1.7 mM) added to the binding assays inhibited by more than 50% the specific binding at a very low SP concentration (20 pM); however, it had no effect at SP concentrations ranging from 50 to 120 pM. This suggests a decrease by ethanol of the affinity of SP to the NK1 receptors involved in this binding component. The ethanol effect disappeared at [EtOH] 0.17 mM.  相似文献   

    12.
    The hypothesis was tested that reversible riboflavin (RF)-binding sites are part of the photoreceptor in Euglena gracilis. Published evidence shows that the phototactic stimulus — with a flavin-type action spectrum — is perceived at the paraflagellar body (PFB). Flagella with PFBs were isolated from Euglena gracilis by a combined cold and Ca2+ shock. Saturable binding of [14C]RF was demonstrated with such preparations, in the oxidized state as well as under reducing conditions in the presence of dithionite. Affinities for RF were high: K D (oxidized)=0.08 M, and K D (reduced)=0.7 M. Flavin mononucleotide and flavin adenine dinucleotide showed lower binding affinities. The in vitro RF binding per unit of protein was enriched approximately tenfold in the flagellar preparations when compared with homogenates of whole cells. The number of (reduced) binding sites per entire flagellum was determined to be in the order of 106. This number is in line with published estimates of chromophores bound in or at the PFB.Abbreviations FAD flavin adenine dinucleotide - FMN flavin mononucleotide - PFB paraflagellar body - RF riboflavin This work was supported by the Deutsche Forscungsgemeinschaft.  相似文献   

    13.
    Summary Monoclonal antibody WT1 (anti-CD7), conjugated to ricin A chain, was administered intrathecally to rhesus monkeys to test its suitability for use in the therapy of leukemic meningitis. The WT1-SMPT-dgRTA conjugate was cytotoxic to CEM (T-lymphoblastic leukemia) cells in vitro with an ID50 of 53 pM. Immunoperoxidase testing showed no binding of WT1 to normal human tissues other than lymph nodes. Thirteen animals received one or more intrathecal 60-g doses of WT1-SMPT-dgRTA. All monkeys receiving repeated doses developed a cerebrospinal fluid (CSF) pleocytosis (primarily eosinophils), which was generally resolving by 3–4 weeks after therapy. Pharmacokinetic studies showed a half-life of 99 min, consistent with CSF clearance by bulk flow. Peak CSF immunotoxin concentrations exceeded the ID50 for CEM cells by more than 2 log units and a concentration exceeding the ID50 was maintained for as long as 24 h. All eight monkeys receiving repeated doses of immunotoxin developed serum antibodies against both WT1 and ricin A chain. In six of these monkeys antibodies were also present in the CSF. Both anti-WT1 and anti-(ricin A chain) antibodies were able to inhibit in vitro cytotoxicity of the immunotoxin for CEM cells; however, only anti-WT1 antibodies could block immunotoxin binding to the cell surface. No monkey developed anti-immunotoxin antibodies fewer than 7 days after the initiation of therapy, suggesting that repeated doses could be administered for up to 1 week without inhibition of clinical activity.  相似文献   

    14.
    Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) produced N-acyl-D-aspartate amidohydrolase (D-AAase) in the presence of N-acetyl-D-aspartate as an inducer. The enzyme was purified to homogeneity. The enzyme had a molecular mass of 56 kDa and was shown by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) to be a monomer. The isoelectric point was 4.8. The enzyme had maximal activity at pH 7.5 to 8.0 and 50°C, and was stable at pH 8.0 and up to 45°C. N-Formyl (Km=12.5 mM), N-acetyl (Km=2.52 mM), N-propionyl (Km=0.194 mM), N-butyryl (Km=0.033 mM), and N-glycyl (Km =1.11 mM) derivatives of D-aspartate were hydrolyzed, but N-carbobenzoyl-D-aspartate, N-acetyl-L-aspartate, and N-acetyl-D-glutamate were not substrates. The enzyme was inhibited by both divalent cations (Hg2+, Ni2+, Cu2+) and thiol reagents (N-ethylmaleimide, iodoacetic acid, dithiothreitol, and p-chloromercuribenzoic acid). The N-terminal amino acid sequence and amino acid composition were analyzed.  相似文献   

    15.
    The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

    16.
    Summary The interaction of 1-anilino-8-naphthalene-sulfonate (ANS) with vesicles derived from hog fundic mucosa was studied in the presence of valinomycin and with the addition of ATP. Evidence was found for two classes of sites, those rapidly accessible to ANS with aK D of 7.5 m and those slowly accessible, but rapidly accessed in the presence of valinomycin with aK D of 2.5 m. ATP transiently increases the quantum yield of the latter ANS binding sites only in the presence of valinomycin, but does not alter the number ofK D of those sites. The time course of this increase correlates with H+ uptake and Rb+ extrusion by those vesicles and H+ carriers such as tetrachlorsalicylanilide or nigericin abolish the ATP response. With ATP addition in the presence of SC14N and valinomycin there is transient uptake of SCN. It is concluded that ANS is acting as a probe of a structural change dependent on a potential and H+ gradient.  相似文献   

    17.
    1. Interaction in the recognition of endothelin-1 (ET-1), a typical bivalent ET receptor-ligand, between ETA and ETB receptors was investigated in the rat anterior pituitary gland, using our quantitative receptor autoradiographic method with tissue sections preserving the cell-membrane structure and ET receptor-related compounds.2. In saturation binding studies with increasing concentrations (0.77–200 pM) of 125I-ET-1 (nonselective bivalent radioligand), 125I-ET-1 binding to the rat anterior pituitary gland was saturable and single with a K D of 71 pM and a B max of 120 fmol mg–1. When 1.0 M BQ-123 (ETA antagonist) was added to the incubation buffer, binding parameters were 8.3 pM of K D and 8.0 fmol mg–1 of B max, whereas 10 nM sarafotoxin S6c (ETB agonist) exerted little change in these binding parameters (K D, 72 pM; B max, 110 fmol mg–1).3. Competition binding studies with a fixed amount (3.8 pM) of 125I-ET-1 revealed that when 1.0 M BQ-123 was present in the incubation buffer, ETB receptor-related compounds such as sarafotoxin S6c, ET-3, IRL1620 (ETB agonist), and BQ-788 (ETB antagonist) competitively inhibited 125I-ET-1 binding with K is of 140, 18, 350 pM, and 14 nM, respectively, however, these compounds were not significant competitors for 125I-ET-1 binding in the case of absence of BQ-123.4. In cold-ligand saturation studies with a fixed amount (390 pM) of 125I-IRL 1620 (ETB radioligand), IRL1620 bound to a single population of the ETB receptor, and no change was observed in binding characteristics in the presence of 1.0 M BQ-123. 125I-IRL1620 binding was competitively inhibited by ET-1 and ET-3 in the absence of BQ-123, with K is of 20 and 29 pM, respectively, the affinities being much the same as those of 29 nM, in the presence of 1.0 M BQ-123.5. Two nonbivalent ETA antagonists, BQ-123 and PD151242, were highly sensitive and full competitors for 125I-ET-1 binding (5.0 pM), in the presence of 10 nM sarafotoxin S6c.6. Taken together with the present finding that mRNAs encoding the rat ETA and the ETB receptors are expressed in the anterior pituitary gland, we tentatively conclude that although there are ETA and ETB receptors with a functional binding capability for ET receptor-ligands, the ETB receptor does not independently recognize ET-1 without the aid of the ETA receptor. If this thesis is tenable, then ET-1 can bridge between the two receptors to form an ETA–ETB receptor heterodimer.  相似文献   

    18.
    The nucleus tractus solitarii (NTS) is a brain stem center mediating depression of blood pressure. In order to elucidate a possible mechanism for the central regulation of blood pressure, we studied noradrenergic indices in the medulla oblongata, a region including the NTS, in spontaneously hypertensive rats (SHR) as compared with normotensive controls of the Wistar Kyoto strain (WKY) at 12 weeks of age. The medulla oblongata was the only brain region showing a significantly low noradrenaline level in the SHR as compared with WKY rats; the level is also significantly decreased at 8 weeks of age. The alpha 1-adrenergic binding sites, as measured with 2-(2, 6-dimethoxy) phenoxyethylamine-methylbenzodioxan [3H]WB4101 showed significant increases inK D andB max values in medulla oblongata homogenates from rats of both strains from 4–12 weeks after birth, with no significant interstrain difference. On the other hand, theK D andB max of the alpha 2-sites, measured by [3H]yohimbine binding, were reduced in SHR as compared to WKY animals, even at 4 weeks after birth when hypertension was not yet apparent. As expected, the relatively selective alpha 2-antagonist, clonidine, was a potent inhibitor of [3H]yohimbine binding but not of [3H]WB4101 binding in these homogenates. The results suggest that some genetic disorder in the alpha 2-adrenergic transmission system in the NTS region may be involved in the development of hypertension in the SHR rats.Dedicated to Professor Yasuzo Tsukada.  相似文献   

    19.
    The binding of [3H]SCH 23390 to dopamine (DA) D1-receptors was measured in the nucleus accumbens of rats treated chronically with desipramine for 14 days. DA D1 — and D2-receptor binding using [3H]SCH 23390 and [3H]spiperone, respectively as ligands, was determined in rats treated for 28 days. NeitherB max norK d values were influenced by chronic desipramine treatment. In addition, chronic desipramine treatment (28 days) did not influence the dose dependent, quinpirole (10–1000 nM)-mediated inhibition of the electrically stimulated release of [3H]DA and [14C]ACh from nucleus accumbens slices or the dose dependent increase in [3H]DA release and decrease in [14C]ACh release in the presence of 1 and 10 M nomifensine. Therefore, our results suggest that the effect of chronic antidepressant treatment cannot be attributed to changes in either DA D11-or D2-receptor binding or DA D2-receptor function in the nucleus accumbens.  相似文献   

    20.
    The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 M for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 M). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号