首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Onconase(ONC) is an amphibian ribonuclease that is in clinical trials as a cancer chemotherapeutic agent. ONC is a homolog of ribonuclease A (RNase A). RNase A can be made toxic to cancer cells by replacing Gly(88) with an arginine residue, thereby enabling the enzyme to evade the endogenous cytosolic ribonuclease inhibitor protein (RI). Unlike ONC, RNase A contains a KFERQ sequence (residues 7-11), which signals for lysosomal degradation. Here, substitution of Arg(10) of the KFERQ sequence has no effect on either the cytotoxicity of G88R RNase A or its affinity for RI. In contrast, K7A/G88R RNase A is nearly 10-fold more cytotoxic than G88R RNase A and has more than 10-fold less affinity for RI. Up-regulation of the KFERQ-mediated lysosomal degradation pathway has no effect on the cytotoxicity of these ribonucleases. Thus, KFERQ-mediated degradation does not limit the cytotoxicity of RNase A variants. Moreover, only two amino acid substitutions (K7A and G88R) are shown to endow RNase A with cytotoxic activity that is nearly equal to that of ONC.  相似文献   

2.
Onconase (ONC), an amphibian member of the bovine pancreatic ribonuclease A (RNase A) superfamily, is in phase III clinical trials as a treatment for malignant mesothelioma. RNase A is a far more efficient catalyst of RNA cleavage than ONC but is not cytotoxic. The innate ability of ONC to evade the cytosolic ribonuclease inhibitor protein (RI) is likely to be a primary reason for its cytotoxicity. In contrast, the non-covalent interaction between RNase A and RI is one of the strongest known, with the RI.RNase A complex having a K(d) value in the femtomolar range. Here, we report on the use of the fast atomic density evaluation (FADE) algorithm to identify regions in the molecular interface of the RI.RNase A complex that exhibit a high degree of geometric complementarity. Guided by these "knobs" and "holes", we designed variants of RNase A that evade RI. The D38R/R39D/N67R/G88R substitution increased the K(d) value of the pRI.RNase A complex by 20 x 10(6)-fold (to 1.4 microM) with little change to catalytic activity or conformational stability. This and two related variants of RNase A were more toxic to human cancer cells than was ONC. Notably, these cytotoxic variants exerted their toxic activity on cancer cells selectively, and more selectively than did ONC. Substitutions that further diminish affinity for RI (which has a cytosolic concentration of 4 microM) are unlikely to produce a substantial increase in cytotoxic activity. These results demonstrate the utility of the FADE algorithm in the examination of protein-protein interfaces and represent a landmark towards the goal of developing chemotherapeutics based on mammalian ribonucleases.  相似文献   

3.
Onconase((R)) (ONC) is a homolog of ribonuclease A (RNase A) that has unusually high conformational stability and is toxic to human cancer cells in vitro and in vivo. ONC and its amphibian homologs have a C-terminal disulfide bond, which is absent in RNase A. Replacing this cystine with a pair of alanine residues greatly decreases the conformational stability of ONC. In addition, the C87A/C104A variant is 10-fold less toxic to human leukemia cells. These data indicate that the synapomorphic disulfide bond of ONC is an important determinant of its cytotoxicity.  相似文献   

4.
A ribonuclease A variant with low catalytic activity but high cytotoxicity   总被引:5,自引:0,他引:5  
Onconase, a homolog of ribonuclease A (RNase A) with low ribonucleolytic activity, is cytotoxic and has efficacy as a cancer chemotherapeutic. Here variants of RNase A were used to probe the interplay between ribonucleolytic activity and evasion of the cytosolic ribonuclease inhibitor protein (RI) in the cytotoxicity of ribonucleases. K41R/G88R RNase A is a less active catalyst than G88R RNase A but, surprisingly, is more cytotoxic. Like Onconase, the K41R/G88R variant has a low affinity for RI, which apparently compensates for its low ribonucleolytic activity. In contrast, K41A/G88R RNase A, which has the same affinity for RI as does the K41R/G88R variant, is not cytotoxic. The nontoxic K41A/G88R variant is a much less active catalyst than is the toxic K41R/G88R variant. These data indicate that maintaining sufficient ribonucleolytic activity in the presence of RI is a requirement for a homolog or variant of RNase A to be cytotoxic. This principle can guide the design of new chemotherapeutics based on homologs and variants of RNase A.  相似文献   

5.
Lee JE  Raines RT 《Biochemistry》2005,44(48):15760-15767
Bovine seminal ribonuclease (BS-RNase) is a homologue of bovine pancreatic ribonuclease (RNase A). Unlike RNase A, BS-RNase has notable toxicity for human tumor cells. Wild-type BS-RNase is a homodimer linked by two intermolecular disulfide bonds. This quaternary structure endows BS-RNase with resistance to inhibition by the cytosolic ribonuclease inhibitor protein (RI), which binds tightly to RNase A and monomeric BS-RNase. Here, we report on the creation and analysis of monomeric variants of BS-RNase that evade RI but retain full enzymatic activity. The cytotoxic activity of these monomeric variants exceeds that of the wild-type dimer by up to 30-fold, indicating that the dimeric structure of BS-RNase is not required for cytotoxicity. Dimers of these monomeric variants are more cytotoxic than wild-type BS-RNase, suggesting that the cytotoxicity of the wild-type enzyme is limited by RI inhibition following dissociation of the dimer in the reducing environment of the cytosol. Finally, the cytotoxic activity of these dimers is less than that of the constituent monomers, indicating that their quaternary structure is a liability. These data provide new insight into structure-function relationships of BS-RNase. Moreover, BS-RNase monomers described herein are more toxic to human tumor cells than is any known variant or homologue of RNase A including Onconase, an amphibian homologue in phase III clinical trials for the treatment of unresectable malignant mesothelioma.  相似文献   

6.
Onconase (ONC) and bovine seminal ribonuclease (BS-RNase) are homologs of bovine pancreatic ribonuclease (RNase A). Unlike RNase A, ONC and BS-RNase can evade the cytosolic ribonuclease inhibitor protein and are potent cytotoxins. Here, the endogenous cytotoxic activities of ONC and BS-RNase are compared in a wide variety of assays. Injections of ONC into one or both testes of mice and rats evokes a stronger aspermatogenic activity than does the injection of BS-RNase. Epididymides exposed to ONC lose mass and all sperm. Testicular tissue is gradually colonized by immunite and fibrocytic cells. Yet, Leydig cells are always present and functional in the ligamented parts of testicles injected with ONC or BS-RNase. ONC is likewise more toxic to mouse embryos than is BS-RNase, both in vitro and in vivo. The antiproliferative effect of ONC on human tumor cell line ML-2 and lymphocytes in a mixed lymphocyte culture is also more pronounced than is that of BS-RNase. The number of granulocyte-macrophage colony-forming units is repressed almost completely by ONC, whereas a five-fold higher dose of BS-RNase does not cause substantial inhibition. In mice, ONC is less immunogenic than BS-RNase but more immunogenic than RNase A. Together, these data indicate that ONC is a pluripotent cytotoxin, and serves as the benchmark with which to gauge the cytotoxicity of other ribonucleases.  相似文献   

7.
Variants of bovine pancreatic ribonuclease (RNase A) engineered to evade the endogenous ribonuclease inhibitor protein (RI) are toxic to human cancer cells. Increasing the basicity of these variants facilitates their entry into the cytosol and thus increases their cytotoxicity. The installation of additional positive charge also has the deleterious consequence of decreasing ribonucleolytic activity or conformational stability. Here, we report that the same benefit can be availed by co-treating cells with a cationic dendrimer. We find that adding the generation 2 poly(amidoamine) dendrimer in trans increases the cytotoxicity of RI-evasive RNase A variants without decreasing their activity or stability. The increased cytotoxicity is not due to increased RI-evasion or cellular internalization, but likely results from improved translocation into the cytosol after endocytosis. These data indicate that co-treatment with highly cationic molecules could enhance the efficacy of ribonucleases as chemotherapeutic agents.  相似文献   

8.
Ribonuclease A (RNase A) and the ribonuclease inhibitor protein (RI) form one of the tightest known protein-protein complexes. RNase A variants and homologues, such as G88R RNase A, that retain ribonucleolytic activity in the presence of RI are toxic to cancer cells. Herein, a new and facile assay is described for measuring the equilibrium dissociation constant (K(d)) and dissociation rate constant (k(d)) for complexes of RI and RNase A. This assay is based on the decrease in fluorescence intensity that occurs when a fluorescein-labeled RNase A binds to RI. To allow time for equilibration, the assay is most readily applied to those complexes with K(d) values in the nanomolar range or higher. Using this assay, the value of K(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be 0.55 +/- 0.03 nM. In addition, the value of K(d) was determined for the complex of RI with unlabeled G88R RNase A to be 0.57 +/- 0.05 nM by using a competition assay with fluorescein-labeled G88R RNase A. Finally, the value of k(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be (7.5 +/- 0.4) x 10(-3) s(-1) by monitoring the increase in fluorescence intensity upon dissociation. This assay can be used to characterize complexes of RI with a wide variety of RNase A variants and homologues, including those with cytotoxic activity.  相似文献   

9.
Several nonmammalian members of the RNase A superfamily exhibit anticancer activity that appears to correlate with resistance to the cytosolic ribonuclease inhibitor (RI). We mutated two human ribonucleases-pancreatic RNase (hRNAse) and eosinophil-derived neurotoxin (EDN)-to incorporate cysteine residues at putative sites of close contact to RI, but distant from the catalytic sites. Coupling of Cys89 of RNase and Cys87 of EDN to proteins at these sites via a thioether bond produced enzymatically active conjugates that were resistant to RI. To elicit cellular targeting as well as to block RI binding, transferrin was conjugated to a mutant human RNase, rhRNase(Gly89)-->Cys) and a mutant EDN (Thr87-->Cys). The transferrin-rhRNase(Gly89-->Cys) thioether conjugate was 5000-fold more toxic to U251 cells than recombinant wild-type hRNase. In addition, transferrin-targeted EDN exhibited tumor cell toxicities similar to those of hRNase. Thus, we endowed two human RI-sensitive RNases with greater cytotoxicity by increasing their resistance to RI. This strategy has the potential to generate a novel set of recombinant human proteins useful for targeted therapy of cancer.  相似文献   

10.
Onconase® (ONC) is a homolog of bovine pancreatic ribonuclease (RNase A) from the frog Rana pipiens. ONC displays antitumoral activity and is in advanced clinical trials for the treatment of cancer. Here, we report the first atomic structures of ONC-nucleic acid complexes: a T89N/E91A ONC-5′-AMP complex at 1.65 Å resolution and a wild-type ONC-d(AUGA) complex at 1.90 Å resolution. The latter structure and site-directed mutagenesis were used to reveal the atomic basis for substrate recognition and turnover by ONC. The residues in ONC that are proximal to the scissile phosphodiester bond (His10, Lys31, and His97) and uracil nucleobase (Thr35, Asp67, and Phe98) are conserved from RNase A and serve to generate a similar bell-shaped pH versus kcat/KM profile for RNA cleavage. Glu91 of ONC forms two hydrogen bonds with the guanine nucleobase in d(AUGA), and Thr89 is in close proximity to that nucleobase. Installing a neutral or cationic residue at position 91 or an asparagine residue at position 89 virtually eliminated the 102-fold guanine:adenine preference of ONC. A variant that combined such substitutions, T89N/E91A ONC, actually preferred adenine over guanine. In contrast, installing an arginine residue at position 91 increased the guanine preference and afforded an ONC variant with the highest known kcat/KM value. These data indicate that ONC discriminates between guanine and adenine by using Coulombic interactions and a network of hydrogen bonds. The structure of the ONC-d(AUGA) complex was also used to probe other aspects of catalysis. For example, the T5R substitution, designed to create a favorable Coulombic interaction between ONC and a phosphoryl group in RNA, increased ribonucleolytic activity by twofold. No variant, however, was more toxic to human cancer cells than wild-type ONC. Together, these findings provide a cynosure for understanding catalysis of RNA cleavage in a system of high medicinal relevance.  相似文献   

11.
Onconasetrade mark, a homolog of bovine pancreatic ribonuclease A (RNase A) with high conformational stability, is cytotoxic and has efficacy as a cancer chemotherapeutic agent. Unlike wild-type RNase A, the G88R variant is toxic to cancer cells. Here, variants in which disulfide bonds were removed from or added to G88R RNase A were used to probe the relationship between conformational stability and cytotoxicity in a methodical manner. The conformational stability of the C40A/G88R/C95A and C65A/C72A/G88R variants is less than that of G88R RNase A. In contrast, a new disulfide bond that links the N and C termini (residues 4 and 118) increases the conformational stability of G88R RNase A and C65A/C72A/G88R RNase A. These changes have little effect on the ribonucleolytic activity of the enzyme or on its ability to evade the cytosolic ribonuclease inhibitor protein. The changes do, however, have a substantial effect on toxicity toward human erythroleukemia cells. Specifically, conformational stability correlates directly with cytotoxicity as well as with resistance to proteolysis. These data indicate that conformational stability is a key determinant of RNase A cytotoxicity and suggest that cytotoxicity relies on avoiding proteolysis. This finding suggests a means to produce new cancer chemotherapeutic agents based on mammalian ribonucleases.  相似文献   

12.
The cytotoxic action of ribonucleases (RNases) requires the interaction of the enzyme with the cellular membrane, its internalization, translocation to the cytosol, and the degradation of ribonucleic acid. The interplay of these processes as well as the role of the thermodynamic and proteolytic stability, the catalytic activity, and the evasion from the intracellular ribonuclease inhibitor (RI) has not yet been fully elucidated. As cytosolic internalization is indispensable for the cytotoxicity of extracellular ribonucleases, we investigated the extent of cytosolic internalization of a cytotoxic, RI-evasive RNase A variant (G88R-RNase A) and of various similarly cytotoxic but RI-sensitive RNase A tandem enzyme variants in comparison to the internalization of the non-cytotoxic and RI-sensitive RNase A. After incubation of K-562 cells with the RNase A variants for 36 h, the internalized amount of RNases was analyzed by rapid cell disruption followed by subcellular fractionation and semiquantitative immunoblotting. The data indicate that an enhanced cellular uptake and an increased entry of the RNases into the cytosol can outweigh the abolishment of catalytic activity by RI. As all RNase A variants proved to be resistant to the proteases present in the different subcellular fractions for more than 100 h, our results suggest that the cytotoxic potency of RNases is determined by an efficient internalization into the cytosol.  相似文献   

13.
Lee JE  Raines RT 《Biochemistry》2003,42(39):11443-11450
Onconase (ONC), a homologue of ribonuclease A (RNase A), is in clinical trials for the treatment of cancer. ONC possesses a conserved active-site catalytic triad, which is composed of His10, Lys31, and His97. The three-dimensional structure of ONC suggests that two additional residues, Lys9 and an N-terminal lactam formed from a glutamine residue (Pca1), could also contribute to catalysis. To determine the role of Pca1, Lys9, and Lys31 in the function of ONC, site-directed mutagenesis was used to replace each with alanine. Values of k(cat)/K(M) for the variants were determined with a novel fluorogenic substrate, which was designed to match the nucleobase specificity of ONC and gives the highest known k(cat)/K(M) value for the enzyme. The K9A and K31A variants display 10(3)-fold lower k(cat)/K(M) values than the wild-type enzyme, and a K9A/K31A double variant suffers a >10(4)-fold decrease in catalytic activity. In addition, replacing Lys9 or Lys31 eliminates the antitumoral activity of ONC. The side chains of Pca1 and Lys9 form a hydrogen bond in crystalline ONC. Replacing Pca1 with an alanine residue lowers the catalytic activity of ONC by 20-fold. Yet, replacing Pca1 in the K9A variant enzyme does not further reduce catalytic activity, revealing that the function of the N-terminal pyroglutamate residue is to secure Lys9. The thermodynamic cycle derived from k(cat)/K(M) values indicates that the Pca1...Lys9 hydrogen bond contributes 2.0 kcal/mol to the stabilization of the rate-limiting transition state during catalysis. Finally, binding isotherms with a substrate analogue indicate that Lys9 and Lys31 contribute little to substrate binding and that the low intrinsic catalytic activity of ONC originates largely from the low affinity of the enzyme for its substrate. These findings could assist the further development of ONC as a cancer chemotherapeutic.  相似文献   

14.
Besides Onconase (ONC) and its V11/N20/R103-variant, oocytes of the Northern Leopard frog (Rana pipiens) contain another homologue of ribonuclease A, which we named Amphinase (Amph). Four variants (Amph-1-4) were isolated and sequenced, each 114 amino acid residues in length and N-glycosylated at two positions. Sequence identities (a) among the variants and (b) versus ONC are 86.8-99.1% and 38.2-40.0%, respectively. When compared with other amphibian ribonucleases, a typical pattern of cysteine residues is evident but the N-terminal pyroglutamate residue is replaced by a six-residue extension. Amph variants have relatively weak ribonucleolytic activity that is insensitive to human ribonuclease inhibitor protein (RI). Values of k(cat)/K(M) with hypersensitive fluorogenic substrates are 10(4) and 10(2)-fold lower than the maximum values exhibited by ribonuclease A and ONC, respectively, and there is little cytosine/uracil or adenine/guanine discrimination at the B(1) or B(2) subsites, respectively. Amph variants have cytotoxic activity toward A-253 carcinoma cells that requires intact ribonucleolytic activity. The glycan component has little or no influence over single-stranded RNA cleavage, RI evasion or cytotoxicity. The crystal structures of natural and recombinant Amph-2 (determined at 1.8 and 1.9 A resolution, respectively) reveal that the N terminus is unlikely to play a catalytic role (but an unusual alpha2-beta1 loop may do so) and the B(2) subsite is rudimentary. At the active site, structural features that may contribute to the enzyme's low ribonucleolytic activity are the fixture of Lys14 in an obstructive position, the accompanying ejection of Lys42, and a lack of constraints on the conformations of Lys42 and His107.  相似文献   

15.
J Futami  T Maeda  M Kitazoe  E Nukui  H Tada  M Seno  M Kosaka  H Yamada 《Biochemistry》2001,40(25):7518-7524
Carboxyl groups of bovine RNase A were amidated with ethylenediamine (to convert negative charges of carboxylate anions to positive ones), 2-aminoethanol (to eliminate negative charges), and taurine (to keep negative charges), respectively, by a carbodiimide reaction. Human RNase 1 was also modified with ethylenediamine. Surprisingly, the modified RNases were all cytotoxic toward 3T3-SV-40 cells despite their decreased ribonucleolytic activity. However, their enzymatic activity was not completely eliminated by the presence of excess cytosolic RNase inhibitor (RI). As for native RNase A and RNase 1 which were not cytotoxic, they were completely inactivated by RI. More interestingly, within the cytotoxic RNase derivatives, cytotoxicity correlated well with the net positive charge. RNase 1 and RNase A modified with ethylenediamine were more cytotoxic than naturally occurring cytotoxic bovine seminal RNase. An experiment using the fluorescence-labeled RNase derivatives indicated that the more cationic RNases were more efficiently adsorbed to the cells. Thus, it is suggested that the modification of carboxyl groups could change complementarity of RNase to RI and as a result endow RNase cytotoxicity and that cationization enhances the efficiency of cellular uptake of RNase so as to strengthen its cytotoxicity. The finding that an extracellular human enzyme such as RNase 1 could be effectively internalized into the cell by cationization suggests that cationization is a simple strategy for efficient delivery of a protein into cells and may open the way of the development of new therapeutics.  相似文献   

16.
Onconase (ONC) from Rana pipiens is the smallest member of the ribonuclease A (RNase A) superfamily. Despite a tertiary structure similar to RNase A, ONC is distinguished by an extremely high thermodynamic stability. In the present paper we have probed the significance of three structural regions, which exhibit structural peculiarities in comparison to RNase A, for the stability of ONC to temperature and guanidine hydrochloride induced denaturation: (i) the N-terminal pyroglutamate residue, (ii) the hydrophobic cluster between helix I and the first beta-sheet, and (iii) the C-terminal disulfide bond. For this purpose, the enzyme variants 相似文献   

17.
Ribonuclease (RNase) A can be endowed with cytotoxic activity by enabling it to evade the cytosolic ribonuclease inhibitor protein (RI). Enhancing its conformational stability can increase further its cytotoxicity. Herein, the A4C/K41R/G88R/V118C variant of RNase A was created to integrate four individual changes that greatly decrease RI affinity (K41R/G88R) and increase conformational stability (A4C/V118C). Yet, the variant suffers a decrease in ribonucleolytic activity and is only as potent a cytotoxin as its precursors. Thus, individual changes that increase cytotoxicity can have offsetting consequences. Overall, cytotoxicity correlates well with the maintenance of ribonucleolytic activity in the presence of RI. The parameter (k(cat)/K(m))(cyto), which reports on the ability of a ribonuclease to manifest its ribonucleolytic activity in the cytosol, is especially useful in predicting the cytotoxicity of an RNase A variant.  相似文献   

18.
One of the tightest known protein-protein interactions in biology is that between members of the ribonuclease A superfamily and the ribonuclease inhibitor protein (RI). Some members of this superfamily are able to kill cancer cells, and the ability to evade RI is a major determinant of whether a ribonuclease will be cytotoxic. The archetypal cytotoxic ribonuclease, onconase (ONC), is in late-stage clinical trials for the treatment of malignant mesothelioma. We present here the first measurement of the inhibition of the ribonucleolytic activity of ONC by RI. This inhibition occurs with Ki = 0.15 μM in a solution of low salt concentration.  相似文献   

19.
Onconase (ONC), a member of the RNase A superfamily extracted from oocytes of Rana pipiens, is an effective cancer killer. It is currently used in treatment of various forms of cancer. ONC antitumor properties depend on its ribonucleolytic activity that is low in comparison with other members of the superfamily. The most damaging side effect from Onconase treatment is renal toxicity, which seems to be caused by the unusual stability of the enzyme. Therefore, mutants with reduced thermal stability and/or increased catalytic activity may have significant implications for human cancer chemotherapy. In this context, we have determined the crystal structures of two Onconase mutants (M23L-ONC and C87S,des103-104-ONC) and performed molecular dynamic simulations of ONC and C87S,des103-104-ONC with the aim of explaining on structural grounds the modifications of the activity and thermal stability of the mutants. The results also provide the molecular bases to explain the lower catalytic activity of Onconase compared with RNase A and the unusually high thermal stability of the amphibian enzyme.  相似文献   

20.
Xu G  Narayan M  Welker E  Scheraga HA 《Biochemistry》2004,43(11):3246-3254
A fast-forming intermediate in the reductive unfolding of frog onconase (ONC), des [30-75], analogous to the des [40-95] intermediate found in the reductive unfolding of its structural homologue, bovine pancreatic ribonuclease A (RNase A), has been isolated and characterized. The midpoints of the thermal transition and chemical denaturing curves (representing global unfolding) indicate that the conformation of des [30-75] is considerably less stable than that of the parent molecule, suggesting that the (30-75) disulfide bond plays a significant role in the conformational stability of ONC. While des [30-75] is formed very quickly by a partial reduction of the parent molecule in a local unfolding step, it is not as easily susceptible to further reduction, indicating that its three disulfides are much more buried compared to the (30-75) disulfide bond in the parent protein. The nature of des [30-75] is similar to that of des [40-95] RNase A, in that des [30-75] ONC is also a disulfide-secure species. In addition, based on the resistance to mild reducing conditions, structured des species appear to form in ONC from unstructured three-disulfide-containing ensembles. This step is key in the oxidative folding of RNaseA, and is much faster in ONC than the formation of the structured des [40-95] species in RNase A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号