首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pH on the conformation of ricin and its A- and B-chains has been studied by measuring their intrinsic fluorescence. At pH 5.0 and 7.5, the structural stability of toxin and subunits was estimated according to the denaturing action of guanidine hydrochloride. It was demonstrated that the fluorescence of native toxin and catalytic A-subunit does not depend significantly on pH in the range pH 3-8, whereas ricin B-chain undergoes a structural transition at pH less than 5.0. The structural stability of ricin and isolated chains differs significantly at pH 7.5 and 5.0; the structural stability of ricin and the A-chain increases, whereas that of the B-chain decreases.  相似文献   

2.
To elucidate the details of pH-induced conformational transformation of ricin [I] in the region surrounding tryptophan residues, we studied parameters of fluorescence of the native toxin and its isolated A- and B-subunits at pH 4.0, 5.0 and 7.4. The studies were carried out using resolution of fluorescence spectra according to different degree of tryptophan accessibility to ionic (iodide) and non-ionic organic (acrylamide) quenchers. Application of the new method allowed to reveal three classes of tryptophan residues differing in their accessibility to quenchers alpha-residues are accessible neither to ions nor to organic molecules; beta-residues are accessible only to organic molecules; while surface gamma-residues are accessible to both types of quenchers. The fluorescence spectra were assessed for each class of tryptophan residues. The major part of them was shown to be localized in apolar rigid microenvironment. Fluorescence of ricin and especially of its isolated subunits proved to be strongly dependent on the pH value. At pH less than 5 the structure of B-chain loosens, this process being reflected by an increase in accessibility of tryptophan residues to quenchers. In acidic solution at least one out of seven tryptophan residues in the ricin molecule undergoes conformational transformation. Positive charge prevails in the regions surrounding quencher-accessible tryptophan residues. Binding of lactose leads to a slight compactization of the toxin structure that causes, in its turn, short-wave shifts of the fluorescence spectra and reduction of Stern-Volmer constants for intraglobular tryptophan residues.  相似文献   

3.
A comparative study of gelonin and A-chains of ricin, mistletoe lectin I and diphtheria toxin was undertaken. The effect of pH was studied on: a) the conformation of the proteins under study using intrinsic fluorescence; b) interaction of these proteins with ricin B-chain using gel-filtration. Structural stability of the proteins was assessed according to denaturing action of guanidine hydrochloride and temperature, and localization of tryptophan residues was determined using fluorescence quenching by I-, Cs+ and acrylamide. All investigated proteins were shown to undergo the conformational changes when a environment became acidic. In comparison with an intact protein--gelonin, the A-chains of ricin, a mistletoe lectin and a diphtheria toxin are less stable. At pH less than 5.0 tryptophan residues became more accessible to quencher and a positive charge of the surrounding area increases (in the case of gelonin it is negatively charged). No reliable interaction of a ricin B-chain with both gelonin and A-chain of diphtheria toxin was observed. The interaction of a ricin B-chain with a A-chain of mistletoe lectin I is weaker than that with ricin A-chain and is practically pH-independent.  相似文献   

4.
A glycopeptide containing a triantennary N-linked oligosaccharide from fetuin was modified by a series of chemical and enzymic reactions to afford a reagent that contained a terminal residue of 6-(N-methylamino)-6-deoxy-D-galactose on one branch of the triantennary structure and terminal galactose residues on the other two branches. Binding assays and gel filtration experiments showed that this modified glycopeptide could bind to the sugar-binding sites of ricin. The ligand was activated at the 6-(N-methylamino)-6-deoxy-D-galactose residue by reaction with cyanuric chloride. The resulting dichlorotriazine derivative of the ligand reacts with ricin, forming a stable covalent linkage. The reaction was confined to the B-chain and was inhibited by lactose. Bovine serum albumin and ovalbumin were not modified by the activated ligand under similar conditions, and we conclude, therefore, that the reaction of the ligand with ricin B-chain was dependent upon specific binding to sugar-binding sites. Ricin that had its galactose-binding sites blocked by the covalent reaction with the activated ligand was purified by affinity chromatography. The major species in this fraction was found to contain 2 covalently linked ligands per ricin B-chain, while a minor species contained 3 ligands per B-chain. The cytotoxicity of blocked ricin was at least 1000-fold less than that of native ricin for cultured cells in vitro, even though the activity of the A-chain in a cell-free system was equal to that from native ricin. Modified ricin that contained only 1 covalently linked ligand was also purified. This fraction retained an ability to bind to galactose affinity columns, although with a lower affinity than ricin, and was only 5- to 20-fold less cytotoxic than native ricin.  相似文献   

5.
The effects of pH on the conformation of mistletoe lectin I and its isolated A- and B-subunits has been investigated by using the methods of intrinsic fluorescence. By the denaturating action of guanidine hydrochloride and the influence of the quenchers (I-, Cs+, acrylamide) the structural stability of the native protein and its isolated subunits was estimated. Treatment of the protein with the denaturant and quenchers revealed its different structure at pH 7.0 and 4.0. At pH 4.0 tryptophan residues become more accessible to quenchers, positive charge of the surrounding area increases and the protein becomes more stable to the action of denaturant. The structure of the isolated A- and B-chains of mistletoe lectin I differs considerably from that of the whole protein: a) its stability to the action of guanidine hydrochloride is lower; b) it depends on the ionic strength of the solvent; c) it is characterized by increased accessibility of tryptophan residues to quenchers (for B-chain). Differences between the conformations of the isolated chains at pH 7.0 and 4.0 are marked more strongly; moreover, at pH 4.5 the B-chain undergoes structural transition. The possible relationship between structural peculiarities of mistletoe lectin I and the mechanism of its transmembrane transfer is discussed.  相似文献   

6.
Recently we have developed blocked ricin, a derivative of native ricin in which the galactose-binding sites of the B-chain are blocked by covalent modification with affinity ligands. This modification impedes the binding function of the B-chain, while sparing its ability to facilitate the entry of the toxic subunit of ricin, the A-chain, into the cytoplasm. Immunotoxins prepared with blocked ricin approach the cytotoxic potency of native ricin with antibody-dependent specificity. Here we report that the high cytotoxic potency of these immunoconjugates, which is attributed to the preserved translocation function of the ricin B-chain, is dependent on the minimal residual lectin activity of blocked ricin. Our findings support the notion that two functions of ricin, membrane binding and translocation, cannot be separated.  相似文献   

7.
The fluorescence method has been used to investigate ricin and its isolated subunits interaction with some model membranes. Three liposome types were used as a model of biological membrane: 1) liposomes constructed from lecithin and cholesterol (9:1, M:M) 2) from ganglioside receptors GM1 and 3) from the mixture of GM1, lecithin and cholesterol (1:9:1). Interaction of the protein with liposome evokes changes in the parameters of both intrinsic protein fluorescence and fluorescence of the covalently bound dansyl. Binding constants were calculated from a decrease of the intrinsic fluorescence intensity as well as from the changes in the dansyl rotation anisotropy. Measurements were carried out at neutral and acidic pH. There was good correlation of the results obtained by different methods. It was shown that association constants were different for intact ricin and its subunits. The constants also depend on liposome composition and pH of the solution. The present study has demonstrated that interaction of ricin with liposome is accounted for not only by receptor centers but also by other hydrophobic regions of ricin that are inaccessible in the native toxin and may represent the region of the subunits interaction.  相似文献   

8.
A rapid method for purifying ricin toxin from castor beans is presented which uses a single affinity column step to obtain pure toxin from a crude extract of castor beans. A galactosyl-Sepharose affinity matrix was used to bind ricin toxin and its associated agglutinin, which both bind specifically to galactose, from a crude extract. The selective elution of ricin toxin and agglutinin was then achieved by eluting the affinity column with a galactose gradient, which sequentially elutes the two proteins due to a difference in binding avidity to the matrix.  相似文献   

9.
Blocked ricin is a glycoconjugate formed by covalent modificationof each of the two galactose-binding sites of ricin with affinityligands derived by modification of glycopeptides containinggalactose-terminated, triantennary, N-linked oligosaccharides.Blocked ricin undergoes a pH-dependent reversible self-association,being predominantly dimeric at neutral pH and monomeric at acidicpH. The shift in the monomer-dimer equilibrium towards the monomericform at acidic pH (pH 4) is inhibited by lactose, as shown bysize-exclusion chromatography. This behavior of blocked ricincan be reproduced in studies with isolated blocked B-chain.The effect, which is dependent on the concentration of the sugar,is specific for sugars having terminal galactose moieties, orsugars having the same orientation of hydroxyl groups at C2and C4 as galactose. These results are interpreted as providingfurther support for the notion that ricin B-chain has a thirdgalactosebinding site, which may be important for the intracellulartrafficking of ricin during intoxication of cells. blocked ricin galactose-binding lectin ricin  相似文献   

10.
Identification of the ricin lipase site and implication in cytotoxicity   总被引:4,自引:0,他引:4  
Ricin is a heterodimeric plant toxin and the prototype of type II ribosome-inactivating proteins. Its B-chain is a lectin that enables cell binding. After endocytosis, the A-chain translocates through the membrane of intracellular compartments to reach the cytosol where its N-glycosidase activity inactivates ribosomes, thereby arresting protein synthesis. We here show that ricin possesses a functional lipase active site at the interface between the two subunits. It involves residues from both chains. Mutation to alanine of catalytic serine 221 on the A-chain abolished ricin lipase activity. Moreover, this mutation slowed down the A-chain translocation rate and inhibited toxicity by 35%. Lipase activity is therefore required for efficient ricin A-chain translocation and cytotoxicity. This conclusion was further supported by structural examination of type II ribosome-inactivating proteins that showed that this lipase site is present in toxic (ricin and abrin) but is altered in nontoxic (ebulin 1 and mistletoe lectin I) members of this family.  相似文献   

11.
The plant toxin ricin has proven valuable as a membrane marker in studies of endocytosis as well as studies of different intracellular transport steps. The toxin, which consists of two polypeptide chains, binds by one chain (the B-chain) to both glycolipids and glycoproteins with terminal galactose at the cell surface. The other chain (the A-chain) enters the cytosol and inhibits protein synthesis enzymatically. After binding the toxin is endocytosed by different mechanisms, and it is transported via endosomes to the Golgi apparatus and the endoplasmic reticulum before translocation of the A-chain to the cytosol. The different transport steps have been analyzed by studying trafficking of ricin as well as modified ricin molecules.  相似文献   

12.
The saccharide binding ability of the low affinity (LA-) binding site of ricin D was abrogated by N-bromosuccinimide (NBS)-oxidation, while in the presence of lactose the number of tryptophan residues eventually oxidized decreased by 1 mol/mol and the saccharide binding ability was retained (Hatakeyama et al., (1986) J. Biochem. 99, 1049-1056). Based on these findings, the tryptophan residue located at the LA-binding site of ricin D was identified. Two derivatives of ricin D which were modified with NBS in the presence and absence of lactose were separated into their constituent polypeptide chains (A- and B-chains), respectively. The modified tryptophan residue or residues was/were found to be contained in the B-chain, but not in the A-chain. From lysylendopeptidase and chymotryptic digests, peptides containing oxidized tryptophan residues were isolated by gel filtration on Bio-Gel P-30 and HPLC. Analysis of the peptides containing oxidized tryptophan revealed that three tryptophan residues at positions 37, 93, and 160 on the B-chain were oxidized in the inactive derivative of ricin D, in which the saccharide binding ability of the LA-binding site was abrogated by NBS-oxidation. On the other hand, the modified residues were determined to be tryptophans at positions 93 and 160 in the active derivative of ricin D which was modified in the presence of lactose, indicating that upon binding with lactose, the tryptophan residue at position 37 of the B-chain was protected from NBS-oxidation. From these results, it is suggested that tryptophan at position 37 on the B-chain is the essential residue for saccharide binding at the LA-binding site of ricin D.  相似文献   

13.
The cytotoxicity of intact cinnamomin (a type II ribosome-inactivating protein, RIP) and the RNA N-glycosidase activity of cinnamomin A-chain have been studied and compared with those of ricin. Cinnamomin A-chain exhibits a similar RNA N-glycosidase activity in inhibiting in vitro protein synthesis compared with that of ricin, whereas the cytotoxicity to BA/F3beta cells of intact cinnamomin is markedly lower than intact ricin. In order to demonstrate that it is the B-chains of the two RIPs that bear the difference in cytotoxicity, two hybrid RIPs are prepared from the purified A-/B-chains of cinnamomin and ricin by the disulfide exchange reaction. It has been found that hybrid RIP constructed from cinnamomin A-chain and ricin B-chain is more toxic to BA/F3beta cells than the native cinnamomin, and equivalent to the native ricin. However, the cytotoxicity to BA/F3beta cells of the hybrid RIP constructed from the ricin A-chain and cinnamomin B-chain is lower than ricin, equivalent to the native cinnamomin. Furthermore, the bound amounts of two B-chains on the cell surface are determined by the method of direct cellular ELISA and Scatchard analysis of the binding of the two B-chains indicates that cinnamomin and ricin share similar binding sites with different affinity.  相似文献   

14.
The nature of the saccharide-binding site of ricin D, which is a galactose- and N-acetylgalactosamine-specific lectin, was studied by chemical modification and spectroscopy. With excitation at 290 nm, ricin D displayed a fluorescence spectrum with a maximum at 335 nm. Upon binding of the specific saccharides, the spectrum shifted to shorter wavelength by 3 nm. However, binding of galactosamine and N-acetylgalactosamine failed to induce such a change in the fluorescence spectrum. The interaction of ricin D with its specific saccharides was analyzed in terms of the variation of the intensity at 320 nm as a function of saccharide concentration. The results indicate that the change in the fluorescence spectrum induced by saccharide binding is attributable to the binding of saccharide to the low-affinity (LA-) binding site of ricin D. The cytoagglutinating activity of ricin D decreased to 2% upon modification of two tryptophan residues/mol with N-bromosuccinimide at pH 4.0, but in the presence of galactose or lactose one tryptophan residue/mol remained unmodified, and a fairly high cytoagglutinating activity was retained. Galactosamine and N-acetylgalactosamine did not show such a protective effect. Spectroscopic analyses indicate that the decrease in the cytoagglutinating activity of ricin D upon tryptophan modification is principally due to the loss of the saccharide binding activity of the LA-binding site. The results suggest that one tryptophan residue is essential for saccharide binding at the LA-binding site, which can bind galactose and lactose but lacks the ability to bind N-acetylgalactosamine and galactosamine.  相似文献   

15.
Chemical modification of tryptophan residues in ricin E was investigated with regard to saccharide-binding. Two out of ten tryptophan residues in ricin E were modified with N- bromosuccinimide at pH 4.5 in the absence of specific saccharide accompanied by a marked decrease in the cytoagglutinating activity. Such a loss of the cytoagglutinating activity was found to be principally due to the oxidation of one tryptophan residue per B-chain. In the presence of lactose, one tryptophan residue/mol was protected from the modification with retention of a fairly high cytoagglutinating activity. However, G a IN Ac did not show such a protective effect. The binding of lactose to ricin E altered the environment of the tryptophan residue at the low affinity binding site of ricin E, leading to a blue shift of the fluorescence spectrum and an UV-difference spectrum with a maximum at 290 nm and a trough at 300 nm. The ability to generate such spectroscopic changes induced by lactose was retained in the derivative in which one tryptophan residue/mol was oxidized in the presence of lactose, but not in the derivative in which two tryptophan residues/mol were oxidized in the absence of lactose. Based on these results, it is suggested that one of the two surface-localized tryptophan residues is responsible for saccharide binding at the low affinity binding site of ricin E, which can bind lactose but lacks the ability to bind GalNAc.  相似文献   

16.
An analysis of the circular dichroism (CD) spectra of isolated ricin A- and B-chains revealed several bands not apparent in the spectrum of intact ricin. Arithmetic combination of the A- and B-chain spectra gave a composite spectrum resembling that of native ricin, indicating that the two chains did not undergo any major conformational change upon dissociation. The addition of lactose to the B-chain at pH 7.2 caused a slight perturbation of a tryptophan-derived negative CD band centred at 283 nm without change to the overall structure of the polypeptide.  相似文献   

17.
A method is described for preparing specific cytotoxic agents by linking intact ricin to antibodies in a manner that produces obstruction of the galactose-binding sites on the B chain of the toxin and so diminishes the capacity of the conjugate to bind non-specifically to cells. The conjugates were synthesised by reacting iodoacetylated ricin with thiolated immunoglobulin and the components of conjugate with reduced galactose-binding capacity were separated by affinity chromatography on Sepharose (a beta-galactosyl matrix) and asialofetuin-Sepharose. Fluorescence-activated cell sorter (FACS) analyses revealed that the fraction of a monoclonal anti-Thy1.1-ricin conjugate that passed through a Sepharose column had markedly diminished capacity to bind non-specifically to Thy1.2-expressing CBA thymocytes and EL4 lymphoma cells. The fraction of conjugate that passed through an asialofetuin-Sepharose column displayed no detectable non-specific binding. Both fractions of conjugate were potent cytotoxic agents for Thy1.1-expressing AKR-A lymphoma cells in tissue culture. They reduced the [3H]leucine incorporation of the cells by 50% at a concentration of 2-5 pM. Comparable inhibition of EL4 cells was only achieved with 3000-7500-fold greater concentrations of conjugate. By contrast, the fraction of anti-Thy1.1-ricin that retained Sepharose-binding capacity showed marked non-specific binding and toxicity to EL4 cells. A conjugate with diminished galactose-binding capacity was also prepared from the W3/25 monoclonal antibody which recognises an antigen upon helper T-lymphocytes in the rat. It elicited powerful and specific toxic effects upon W3/25 antigen-expressing rat T-leukaemia cells. This finding is of particular importance because isolated ricin A-chain disulphide-linked to W3/25 antibody is not cytotoxic. The property of the B-chain in intact ricin conjugates that facilitates delivery of the A-chain to the cytosol thus appears to be independent of galactose recognition. It is concluded that the 'blocked' ricin conjugates combine the advantages of high potency, which is often lacking in antibody-A-chain conjugates, with high specificity, which previously was lacking in intact ricin conjugates.  相似文献   

18.
Chemical modification of histidine residues in ricin E was studied with regard to saccharide binding. The analytical data indicate that 6 out of 7 histidine residues in ricin E are eventually modified with diethylpyrocarbonate (DEP) at pH 6.0 and 25°C in the absence of specific saccharides. Modification of histidine residues greatly decreased the cytoagglutinating activity of ricin E, and only 10% of the residual activity was found after modification of 6 histidine residues/mol. The data of affinity chromatography using lactamyl- and galactosamine-cellulofine columns suggest that modification of histidine residues does not have much effect on the binding ability at the low affinity saccharide-binding site of ricin E but abolishes the binding ability at the high affinity saccharide-binding site. In the presence of lactose, one histidine residue/mol was protected from the DEP modification with retention of a fairly high cytoagglutinating activity. Such a protective effect was also observed for specific saccharides such as galactose and A^-acetylgalactosamine, but not for glucose, a non-specific saccharide. On treatment with hydroxylamine, the modified ricin E restored 67 % of the cytoagglutinating activity. Based on these findings, it is suggested that in the high affinity saccharide- binding site of ricin E there exists one histidine residue responsible for saccharide binding.  相似文献   

19.
Deglycosylation of ricin may be necessary to prevent the entrapment of antibody-ricin conjugates in vivo by cells of the reticuloendothelial system which have receptors that recognise the oligosaccharide side chains on the A- and B-chains of the toxin. Carbohydrate-deficient ricin was therefore prepared by recombining the A-chain, which had been treated with alpha-mannosidase, with the B-chain, which had been treated with endoglycosidase H or alpha-mannosidase or both. By recombining treated and untreated chains, a series of ricin preparations was made having different carbohydrate moieties. The removal of carbohydrate from the B-chain did not affect the ability of the toxin to agglutinate erythrocytes, and alpha-mannosidase treatment of the A-chain did not affect its ability to inactivate ribosomes. The toxicity of ricin to cells in culture was only reduced in those preparations containing B-chain that had been treated with alpha-mannosidase, when a 75% decrease in toxicity was observed. The toxicity of the combined ricin preparation to mice varied from double to half that of native ricin, depending on the chain(s) treated and the enzymes used. Removal of carbohydrate greatly reduced the hepatic clearance of the toxin and the levels of toxin in the blood were correspondingly higher. These results suggest that antibody-ricin conjugates prepared from deglycosylated ricin would be cleared more slowly by the liver, inflict less liver damage, and have greater opportunity to reach their target.  相似文献   

20.
CEL-III is a Ca(2+)-dependent hemolytic lectin, isolated from the marine invertebrate Cucumaria echinata. The three-dimensional structure of CEL-III/GalNAc and CEL-III/methyl alpha-galactoside complexes was solved by x-ray crystallographic analysis. In these complexes, five carbohydrate molecules were found to be bound to two carbohydrate-binding domains (domains 1 and 2) located in the N-terminal 2/3 portion of the polypeptide and that contained beta-trefoil folds similar to ricin B-chain. The 3-OH and 4-OH of bound carbohydrate molecules were coordinated with Ca(2+) located at the subdomains 1alpha, 1gamma, 2alpha, 2beta, and 2gamma, simultaneously forming hydrogen bond networks with nearby amino acid side chains, which is similar to carbohydrate binding in C-type lectins. The binding of carbohydrates was further stabilized by aromatic amino acid residues, such as tyrosine and tryptophan, through a stacking interaction with the hydrophobic face of carbohydrates. The importance of amino acid residues in the carbohydrate-binding sites was confirmed by the mutational analyses. The orientation of bound GalNAc and methyl alpha-galactoside was similar to the galactose moiety of lactose bound to the carbohydrate-binding site of the ricin B-chain, although the ricin B-chain does not require Ca(2+) ions for carbohydrate binding. The binding of the carbohydrates induced local structural changes in carbohydrate-binding sites in subdomains 2alpha and 2beta. Binding of GalNAc also induced a slight change in the main chain structure of domain 3, which could be related to the conformational change upon binding of specific carbohydrates to induce oligomerization of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号