首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dose-dependent increase in micronucleated polychromatic erythrocytes was observed in the bone marrow of male C57B1/6 mice 30 h after a single intraperitoneal injection of vinyl acetate (250, 500, 1000 or 2000 mg/kg b.wt.; (9-14 animals per group). The effect was statistically significant at 1000 mg/kg (1.33 +/- 0.29% vs. 0.6 +/- 0.10% in olive oil-treated controls) and at 2000 mg/kg (1.57 +/- 0.19%) of vinyl acetate. These doses were fatal to 6 (1000 mg/kg) and 8 (2000 mg/kg) out of 14 animals in both groups. The ratio of polychromatic to normochromatic cells decreased as a function of vinyl acetate dose. Cyclophosphamide (20 mg/kg), used as a positive control chemical, induced a clear increase in micronucleated polychromatic erythrocytes (2.07 +/- 0.20%). None of the treatments affected the number of micronuclei in normochromatic erythrocytes. In human whole-blood lymphocyte cultures, micronucleus induction by a 48-h treatment with vinyl acetate (0.125, 0.25, 0.5, 1 and 2 mM; 24 h after culture initiation) was studied in lymphocytes with preserved cytoplasm from smear slides prepared by a method involving the removal of erythrocytes at harvest by sodium cyanide treatment to improve preparation quality. The frequency of micronucleated lymphocytes reached a peak at 0.5 mM (3.2 +/- 1.0% vs. 0.9 +/- 0.1% in control cultures) and 1 mM (3.1 +/- 0.7%), with a decline at 2 mM probably because of a toxic effect resulting in mitotic inhibition.  相似文献   

2.
The response of the erythrocyte insulin receptor to a prolonged intravenous infusion of insulin has been measured in normal individuals during hypoglycaemia and when hypoglycaemia was prevented by the concurrent infusion of glucose. When euglycaemia was maintained, mean (+/- S.D.) specific insulin binding following the 5 hour insulin infusion was unchanged (6.9 +/- 2.1 to 6.65 +/- 2.2% bound per 2.25 X 10(9) erythrocytes). In the presence of mild hypoglycaemia, mean (+/- SD) specific insulin binding rose from 6.6 +/- 2.3 to 7.6 +/- 2.5% bound per 2.25 X 10(9) erythrocytes (P less than 0.01), after 5 hours. This increase was due to increased receptor affinity. It was not correlated with the increase in the concentration of any individual counter-regulatory hormone. Initial insulin receptor binding correlated strongly with the subsequent decline in plasma glucose concentration (r = 0.9527; P less than 0.01). Thus, acute hyperinsulinaemia, when associated with hypoglycaemia, does not result in downregulation of insulin receptors on erythrocytes but rather results in increased receptor binding. Consequently, the insulin receptor may not play an active role in protecting the individual against acute hypoglycaemia.  相似文献   

3.
The effect of enalapril and captopril on total glutathione content (GSSG + GSH) and selenium-dependent glutathione peroxidase (Se-GPx) and glutathione reductase (GSSG-Rd) activities was investigated in mouse tissues. CF-1 mice (4-mo-old females) received water containing enalapril (20 mg/l) or captopril (50 mg/l) for 11 wk. Enalapril increased GSSG + GSH content (P < 0.05) in erythrocytes (147%), brain (112%), and lung (67%), and captopril increased GSSG + GSH content in erythrocytes (190%) and brain (132%). Enalapril enhanced Se-GPx activity in kidney cortex (42%) and kidney medulla (23%) and captopril in kidney cortex (30%). GSSG-Rd activity was enhanced by enalapril in erythrocytes (21%), brain (21%), liver (18%), and kidney cortex (53%) and by captopril in erythrocytes (25%), brain (19%), and liver (34%). In vitro erythrocyte oxidant stress was evaluated by thiobarbituric acid-reactive substances (TBARS) production (control 365 +/- 11, enalapril 221 +/- 26, captopril 206 +/- 17 nmol TBARS x g Hb(-1) x h(-1); both P < 0.05 vs. control) and phenylhydrazine-induced methemoglobin (MetHb) formation (control 66.5 +/- 3.5, enalapril 52.9 +/- 0.4, captopril: 56.4 +/- 2.9 micromol MetHb/g Hb; both P < 0.05 vs. control). Both angiotensin-converting enzyme inhibitor treatments were associated with increased nitric oxide production, as assessed by plasma NO-(3) + NO-(2) level determination (control 9.22 +/- 0.64, enalapril 13.7 +/- 1.9, captopril 17.3 +/- 3.0 micromol NO-(3) + NO-(2)/l plasma; both P < 0.05 vs. control). These findings support our previous reports on the enalapril- and captopril-induced enhancement of endogenous antioxidant defenses and include new data on glutathione-dependent defenses, thus furthering current knowledge on the association of ACE inhibition and antioxidants.  相似文献   

4.
The in vitro effects of melatonin (N-acetyl-5-methoxy-tryptamine) on human carbonic anhydrase isozymes (HCA-I and HCA-II) from human erythrocytes and in vivo effects on rat erythrocytes carbonic anhydrase (CA) were determined. Human erythrocyte carbonic anhydrase isozymes were purified by haemolysate preparation and Sepharose-4B-L tyrosine-sulfanilamide affinity gel chromatography. The HCA-I enzyme, having a specific activity of 7337.5 EU/mg protein, was purified 843-fold with a yield of 60% and the HCA-II enzyme, having a specific activity of 17067EU/mg protein, was purified 1962-fold with a yield of 22.7%. For in vitro experiments, the enzyme activity was minimal at 2 x 10(-4) M melatonin concentration and increased above this concentration. Ten mgkg(-1) melatonin was administered intraperitoneally and showed a stimulatory effect on the enzyme. Time-dependent in vivo studies were conducted for melatonin in Sprague-Dawley type rats. It was found that CA activity in the rat erythrocytes was decreased by the melatonin after 1 and 3 hours to 2500 +/- 500.0 and 1875 +/- 239.4 respectively which were statistically significant (p < 0.05) differences to the control (2660 +/- 235.8). However, CA activity was restored to its normal level after 6h (2666 +/- 235.7) (p > 0.05) probably due to metabolism of the melatonin. The findings indicate that melatonin may be pharmacologically useful in some diseases.  相似文献   

5.
The fructose 2,6-bisphosphate concentrations in unwashed, washed, and leukocyte-free erythrocytes were compared. The concentration in washed red cells was 31 +/- 15 pmol per ml of cells (mean +/- S.D., n = 6). The concentration in unwashed erythrocytes was at least twofold higher, but the value in washed red cells was not due to leukocyte contamination because it did not decrease further when washed cells were passed through an Imgard column, which would have removed any remaining leukocytes. No platelets were detected among the washed erythrocytes. Thus, the concentration in erythrocytes after washing was ascribed solely to these cells. The fructose 2,6-bisphosphate concentration did not change when the glycolytic activity varied with pH, indicating that this compound is not involved in the regulation of carbohydrate metabolism in erythrocytes under these conditions.  相似文献   

6.
Membrane bilayer balance and erythrocyte shape: a quantitative assessment   总被引:5,自引:0,他引:5  
J E Ferrell  K J Lee  W H Huestis 《Biochemistry》1985,24(12):2849-2857
When human erythrocytes are incubated with certain phospholipids, the cells become spiculate echinocytes, resembling red cells subjected to metabolic starvation or Ca2+ loading. The present study examines (1) the mode of binding of saturated phosphatidylcholines and egg lysophosphatidylcholine to erythrocytes and (2) the quantitative relationship between phospholipid incorporation and red cell shape. We find that the phospholipids studied become intercalated into erythrocyte membranes, not simply adsorbed to the cell surface. Spin-labeling and radiolabeling data show that the incorporation of (4 +/- 1) X 10(6) molecules of exogenous phosphatidylcholine per cell converts discocytes to stage 3 echinocytes with about 35 conical spicules. This amount of lipid incorporation is estimated to expand the red cell membrane outer monolayer by 1.7% +/- 0.6%. Calculations of the inner and outer monolayer surface areas of model discocytes and stage 3 echinocytes yield an estimated difference of 0.7% +/- 0.2%.  相似文献   

7.
Choline kinase (EC 2.7.1.32) was investigated in plasmodium falciparum-infected erythrocytes. Disrupted infected erythrocytes had a choline kinase activity of 1.9 +/- 0.2 nmol phosphorylcholine/10(7) infected cells per h, whereas the activity in normal uninfected erythrocytes was less than 6 pmol/10(7) cells per h. A broad alkaline optimal pH (7.9-9.2) was observed. The Km values for choline and ATP were 79 +/- 20 microM, and 1.3 +/- 0.3 mM, respectively. ATP concentrations higher than 12 mM inhibited choline kinase. Maximal activity was registered with a Mg2+ concentration of 10 mM, whereas its replacement by Mn2+, or other divalent cations, involved a decrease in choline kinase activity of at least 75%. Inhibition by products of the reaction, such as phosphorylcholine and ADP was investigated. In plasmodium knowlesi-infected erythrocytes, choline kinase had similar properties, but with a much higher specific activity of 16.4 +/- 2.1 nmol/10(7) infected cells per h. Subcellular fractionation of P. knowlesi-infected erythrocyte suspensions revealed that choline kinase was located exclusively in the cytosol of the parasite. We show that this enzyme is a useful index of parasite cytosolic content leakage, when infected erythrocytes are fractionated by saponin lysis or nitrogen decompression.  相似文献   

8.
The aim of this study was to determine whether leukotriene C4 (LTC4) is a mediator of hypoxic pulmonary vasoconstriction. We hypothesized that similar increases in LTC4, detected in the lung parenchyma and pulmonary vascular compartment during cyclooxygenase blockade with indomethacin (INDO), would be observed during an equal increase in pulmonary arterial pressure caused by acute alveolar hypoxia (HYP, 100% N2) or platelet-activating factor (PAF, 10 micrograms into the pulmonary artery). Rat lungs were perfused at constant flow in vitro with an albumin-Krebs-Henseleit solution. Mean pulmonary arterial pressure (n = 6 per group) increased from a base line of 10.9 +/- 1.2 to 15.8 +/- 2.1 (HYP + INDO) and 15.5 +/- 1.9 (SE) Torr (PAF + INDO). LTC4 levels increased only in response to PAF + INDO; perfusate levels increased from 0.4 +/- 0.07 to 5.3 +/- 1.1 ng/40 ml, and lung parenchymal levels increased from 1.9 +/- 0.07 to 22.8 +/- 5.3 ng/lung. Diethylcarbamazine (lipoxygenase inhibitor) reduced PAF-induced lung parenchymal levels of LTC4 by 68% and pulmonary hypertension by 63%. We conclude that 1) LTC4 is not a mediator of hypoxic pulmonary vasoconstriction and 2) intravascular PAF is a potent stimulus for LTC4 production in the lung parenchyma.  相似文献   

9.
Beta-adrenoceptor stimulation in vivo shifts potassium into the cells. To examine whether human erythrocytes participate in this process, we measured, along with serum or plasma potassium, the concentrations of potassium and sodium in erythrocytes. Beta-adrenoceptor stimulation was obtained by infusion of either fenoterol or hexoprenaline into 6 volunteers at rest or by endogenous amines provoked in 14 volunteers during ergometric exercise. Metabolic effects were followed at rest on serum insulin, C-peptide, and growth hormone levels, and during exercise on pH on lactate concentration in blood. The potassium concentration (mean +/- S.E.M.) dropped (p less than 0.01) in serum from 4.64 +/- 0.37 to 3.19 +/- 0.43 mmol x l-1 in the first hour at rest and in plasma from 5.70 +/- 0.93 to 4.63 +/- 0.45 in 90 sec directly after exercise. The concentration of erythrocyte sodium dropped (p less than 0.001) from 9.68 +/- 0.73 to 8.81 +/- 0.62 mmol x l-1 in cells and from 9.62 +/- 1.16 to 8.55 +/- 1.24 during exercise for 90 s, respectively. Changes in the concentration ratio of cellular sodium to potassium confirmed this sodium shift. An increased sodium transport in erythrocytes due to beta-adrenoceptor stimulation in vivo appears to complement a shift of serum potassium into the cells and may be mediated by the membrane-bound sodium, potassium ATPase.  相似文献   

10.
Vascular dysfunction characterized by a hyperreactivity to vasoconstrictors and/or impaired vascular relaxation contributes to increased incidence of cardiovascular disease in diabetes. Endothelin (ET)-1, a potent vasoconstrictor, is chronically elevated in diabetes. However, the role of ET-1 in resistance versus larger vessel function in mild diabetes remains unknown. Accordingly, this study investigated vascular function of third-order mesenteric arteries and basilar arteries in control Wistar and Goto-Kakizaki (GK) rats, a model of mild Type 2 diabetes. Six weeks after the onset of diabetes, contractile responses to 0.1-100 nM ET-1 and relaxation responses to 1 nM-10 microM acetylcholine (ACh) in vessels preconstricted (baseline + 60%) with serotonin (5-HT) were assessed by myograph studies in the presence or absence of a nitric oxide synthase (NOS) inhibitor, N-nitro-L-arginine (L-NNA). Maximum contractile response to ET-1 was augmented in mesenteric vessels (155 +/- 18% in GK vs. 81 +/- 6% in control; n = 5-7) but not in the basilar artery (134 +/- 29% in GK vs. 107 +/- 17% in control; n = 4 per group). However, vascular relaxation was impaired in the basilar arteries (22 +/- 4% in GK vs. 53 +/- 7% in control; n = 4 per group) but not in mesenteric arteries of GK rats. Inhibition of NOS decreased the relaxation response of basilar arteries to 15 +/- 8% and 42 +/- 5% in GK and control rats, respectively; whereas, in resistance vessels, corresponding values were 56 +/- 7% and 89 +/- 3% (vs. 109 +/- 2% and 112 +/- 3% without NOS blockade), indicating the involvement of different vasorelaxation-promoting pathways in these vascular beds. These findings provide evidence that the ET system is activated even under mild hyperglycemia and that it contributes to the hyperreactivity of resistance vessels, therefore, the ET system may play an important role in elevated blood pressure in Type 2 diabetes.  相似文献   

11.
Pyridine nucleotide levels and the activities of enzymes involved in NAD synthesis (nicotinic acid phosphoribosyltransferase, nicotinic acid- and nicotinamide mononucleotide-adenylyltransferase) have been assayed in human normal lymphocytes by an HPLC method using radioactive or nonradioactive substrates. NAD concentration was 46.4 +/- 17.2 pmol 10(-6) cells, and that of NADP was 14.5 +/- 3.9 pmol 10(-6) cells (mean +/- standard deviation). The adenylyltransferase activity using nicotinic acid mononucleotide as substrate was 1.530 +/- 0.216 nmol h(-1) 10(-6) cells, using nicotinamide mononucleotide was 1.466 +/- 0.354 nmol h(-1) 10(-6) cells. The apparent K(M) values were 0.015 mM for the former substrate and 0.167 mM for the latter. The mean activity of nicotinic acid phosphoribosyltransferase was 0.038 +/- 0.014 nmol h(-1) 10(-6) cells, and the apparent K(M) for nicotinic acid was 0.165 mM. The proposed methods, easy and rapid to perform, are reliable and sensitive, avoiding the use of radiolabels except for NAPRT and displaying a very low activity. The reported findings, together with the previous ones in human erythrocytes, can provide an useful base to investigate NAD metabolism in humans through the study of blood cells.  相似文献   

12.
1. Suspensions of rat thymocytes accumulate free 2-deoxy-D-glucose (2-dGlc) within the cytosol to a concentration approx. 25-fold above the external concentration. This active accumulation was enhanced by 40 nM-phorbol 12-myristate 13-acetate (phorbol). 2. The Km for zero-trans uptake in control cells was 2.3 +/- 0.14 mM and Vmax. was 0.41 +/- 0.08 mumol/min per 10(10) cells (n = 6). In cells treated with phorbol (40 nM) the Km for zero-trans uptake was 1.2 +/- 0.13 mM and Vmax. 0.46 +/- 0.03 mumol/min per 10(10) cells (n = 6). The Km was decreased significantly by phorbol (P less than 0.01). 3. Phorbol-dependent activation of thymocytes delayed exit of free 2-dGlc into sugar-free solution and prevented exchange exit. Activation had no effect on 3-O-methyl D-glucoside (3-OMG) exit. 4. Coupling of 2-dGlc transport to hexokinase activity was determined by observing the effects of various concentrations of unlabelled cytosolic 2-dGlc on influx of labelled 2-dGlc into the hexose phosphate pool. In control cells this coupling was 0.81 +/- 0.02 and in phorbol-activated cells it was 0.92 +/- 0.01 (P less than 0.01). 5. The high-affinity inhibitor of hexokinase, mannoheptulose, inhibited uptake of 2-dGlc in both control and phorbol-treated cells. These data are consistent with a model for activation of sugar transport in which hexokinase activity is integrated with the sugar transporter at the endofacial surface. The results suggest that phorbol increases the degree of coupling transport with hexokinase activity, thereby leading to an increase in the rate of uptake of 2-dGlc, a decrease in exit of free 2-dGlc from the cytosol and an increase in free 2-dGlc accumulation.  相似文献   

13.
Having minimized spectroscopic interference by hemoglobin (Hb), peroxidation processes in intact erythrocytes could be monitored in a continuous assay using the fluorescent polyunsaturated fatty acid, parinaric acid (PnA), as a peroxidation probe. Control experiments to establish the character of the method are described in detail. As a practical application, comparative studies were performed to monitor the response of normal and sickle Hb-containing human erythrocytes to oxidative stress in the PnA assay. After 10 min of incubation with 200 microM cumene hydroperoxide (cumOOH), peroxidation of PnA was found to be enhanced in erythrocytes from sickle cell disease patients (SS: 48 +/- 9% (n = 6) of initial amount had been peroxidized) compared to healthy controls (AA: 30 +/- 4% (n = 9)). PnA peroxidation in erythrocytes from sickle cell trait individuals (AS: 30 +/- 3% (n = 4)) was equal to that in control cells. The increased oxidation of PnA in sickle erythrocytes was accompanied by enhanced oxidation of Hb (metHb and hemichrome formation), indicating that sickle Hb mediates enhanced cumOOH-derived radical generation. It is concluded that PnA can be a useful tool in studying membrane peroxidation processes in intact normal and pathological erythrocytes.  相似文献   

14.
Effect of hematocrit on cerebral blood flow with induced polycythemia   总被引:2,自引:0,他引:2  
Cerebral blood flow (CBF) is lowered during polycythemia. Whether this fall is due to an increase in red blood cell concentration (Hct) or to an increase in arterial O2 content (Cao2) is controversial. We examined the independent effects of Hct and Cao2 on CBF as Hct was raised from 30 to 55% in anesthetized 1- to 7-day-old sheep. CBF was measured by the radiolabeled microsphere technique before and after isovolemic exchange transfusion with either oxyhemoglobin-containing erythrocytes (in 5 control animals) or with methemoglobin-containing erythrocytes (in 9 experimental animals). Following exchange transfusion in the control animals, Hct rose (30 +/- 1 vs. 55 +/- 1%, mean +/- SE), Cao2 increased (15.1 +/- 0.8 vs. 26.7 +/- 0.9 vol%), and CBF fell (66 +/- 9 vs. 35 +/- 5 ml X min-1 X 100 g-1). Because the fall in CBF was proportionate to the rise in Cao2, cerebral O2 transport (CBF X Cao2) was unchanged. Following exchange transfusion in the experimental animals, Hct rose (32 +/- 1 vs. 55 +/- 1%) but Cao2 did not change. Nevertheless, CBF still fell (73 +/- 4 vs. 48 +/- 2 ml X min-1 X 100 g-1) and, as a result, cerebral O2 transport also fell. The latter cannot be attributed to a fall in cerebral O2 uptake, as cerebral O2 uptake was unaffected during each of these conditions. Comparison of the two groups of animals showed that approximately 60% of the fall in CBF may be attributed to the increase in red cell concentration alone. It is probable that this effect is due largely to changes in blood viscosity.  相似文献   

15.
The rate of (13)C-label incorporation into both aspartyl (NAA C3) and acetyl (NAA C6) groups of N-acetyl aspartate (NAA) was simultaneously measured in the rat brain in vivo for up to 19 h of [1-(13)C]glucose infusion (n = 8). Label incorporation was detected in NAA C6 approximately 1.5 h earlier than in NAA C3 because of the delayed labeling of the precursor of NAA C3, aspartate, compared to that of NAA C6, glucose. The time courses of NAA were fitted using a mathematical model assuming synthesis of NAA in one kinetic compartment with the respective precursor pools of aspartate and acetyl coenzyme A (acetyl-CoA). The turnover rates of NAA C6 and C3 were 0.7 +/- 0.1 and 0.6 +/- 0.1 micromol/(g h) with the time constants 14 +/- 2 and 13 +/- 2 h, respectively, with an estimated pool size of 8 micromol/g. The results suggest that complete label turnover of NAA from glucose occurs in approximately 70 h. Several hours after starting the glucose infusion, label incorporation into glutathione (GSH) was also detected. The turnover rate of GSH was 0.06 +/- 0.02 micromol/(g h) with a time constant of 13 +/- 2 h. The estimated pool size of GSH was 0.8 micromol/g, comparable to the cortical glutathione concentration. We conclude that NAA and GSH are completely turned over and that the metabolism is extremely slow (< 0.05% of the glucose metabolic rate).  相似文献   

16.
The transport characteristics of fluorescein methotrexate (F-MTX) were studied by using the rat intestinal crypt cell line IEC-6. Enhanced accumulation of F-MTX at 4 degrees C suggests the existence of an active efflux system. MK-571, an inhibitor of the multidrug resistance-associated protein/ATP binding cassette C (MRP/ABCC) family, also enhanced the accumulation of F-MTX. Transcellular transport of F-MTX from the apical to the basolateral compartment was 2.5 times higher than the opposite direction. This vectorial transport was also reduced by MK-571, indicating the presence of Mrp-type transporter(s) on the basolateral membrane. Mrp3 mRNA was readily detectable, and the protein was localized on the basolateral membrane. Uptake of FMTX into membrane vesicles from IEC-6 cells and Spodoptera frugiperda-9 cells expressing rat Mrp3 were both ATP dependent and saturable as a function of the F-MTX concentration. Similar Km values (11.0 +/- 1.8 and 4.5 +/- 1.1 microM) and inhibition profiles by MK-571, estradiol-17beta-d-glucuronide, and taurocholate for the ATP-dependent transport of F-MTX into these vesicles were obtained. These findings suggest that the efflux of F-MTX is mediated by Mrp3 on the basolateral membrane of IEC-6 cells.  相似文献   

17.
Systemic vascular effects of hydralazine, prazosin, captopril, and nifedipine were studied in 115 anesthetized dogs. Blood flow (Q) and right atrial pressure (Pra) were independently controlled by a right heart bypass. Transient changes in central blood volume after an acute reduction in Pra at a constant Q showed that blood was draining from two vascular compartments with different time constants, one fast and the other slow. At three dose levels producing comparable reductions in systemic arterial pressure (30-40% at the highest dose), these drugs had different effects on flow distribution and venous return. Hydralazine and prazosin had parallel and balanced effects on arterial resistance of the two vascular compartments, and flow distribution was unaltered. Captopril preferentially reduced arterial resistance of the compartment with a slow time constant for venous return (-26 +/- 6%, -30 +/- 6%, -50 +/- 5% at 0.02, 0.10, and 0.50 mg X kg-1 X h-1, respectively; means +/- SEM) without altering arterial resistance of the fast time-constant compartment. Blood flow to the slow time-constant compartment was increased 43 +/- 14% at the highest dose, and central blood volume was reduced 108 +/- 15 mL. In contrast, nifedipine had a balanced effect on arterial resistance with the lowest dose (0.025 mg/kg) but caused a preferential reduction in arterial resistance of the fast time-constant compartment at higher doses (-38 +/- 4% and -55 +/- 2% at 0.05 and 0.10 mg/kg, respectively). Blood flow to the slow time-constant compartment was reduced 36 +/- 5% at the highest dose of nifedipine, and central blood volume was increased 66 +/- 12 mL. Total systemic venous compliance was unaltered or slightly reduced by each of the four drugs. These results add further evidence to the hypothesis that peripheral blood flow distribution is a major determinant of venous return to the heart.  相似文献   

18.
Erythrocyte insulin-like growth factor I (IGF-I) and insulin receptors were characterized in 10 normal prepubertal children (5 girls and 5 boys) aged 4-11 yrs and 10 normal adults (4 women and 6 men) aged 32-47 yrs. erythrocytes were purified from 5 ml of blood by Ficoll-Paque gradient centrifugation. Reticulocytes count in the erythrocyte suspensions were lower than 1%. Insulin and IGF-I binding assays were performed simultaneously. Maximal percent binding of [125I] labelled IGF-I was significantly higher in prepubertal children than in adults (8.7 +/- 0.7% versus 6.2 +/- 0.5% at a concentration of 5 x 10(9) erythrocytes/ml). Scatchard analysis revealed the high affinity constant was better in prepubertal children (Ka = 4.6 +/- 1.3 nM-1 versus 1.8 +/- 0.2 nM-1), whereas the binding capacity was similar (5.8 +/- 1.1 versus 7.7 +/- 0.8 high affinity binding sites/cell). In both groups, unlabelled IGF-I inhibited tracer-binding half maximally at about 1 nM. Insulin was 100-fold less potent. In adults, specific binding of [125I] labelled IGF-I was higher in women (7.6 +/- 0.7%) than in men (5.3 +/- 0.4%). No significant difference was observed in maximal specific binding of [125I] labelled insulin between prepubertal children (8.2 +/- 0.5%) and adults (7.2 +/- 0.7%). In both groups, competition by unlabelled insulin for [125I] labelled insulin binding gave 50% displacement for approximately 0.25 nM and IGF-I was about 80-fold less potent. Both IGF-I and insulin binding parameters were not significantly correlated with plasma hormone levels. In prepubertal children, the high-affinity IGF-I receptors number decreased with increasing high-affinity insulin receptors number.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We depleted reticulocytes from erythrocytes of both sickle cell disease (SCD) subjects and healthy controls by four methods: fluorescence-activated cell sorting (FACS), Miltenyi immunomagnetic depletion (MACS), a combination of these methods (FACS + MACS) and Percoll density separation. The efficiency of these methods was assessed by new methylene blue staining and manual enumeration of the reticulocytes. FACS sorted erythrocytes from reticulocytes based on size and granularity, as well as the absence of dsDNA staining. MACS depleted reticulocytes from erythrocytes based on the immunoaffinity to CD36 and CD71. Reticulocytes from healthy controls were depleted to 相似文献   

20.
We investigated the mechanisms by which S-nitrosoglutathione (GSNO) alters cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride (Cl(-)) secretion across Calu-3 cells, an extensively used model of human airway gland serous cells. Confluent monolayers of Calu-3 cells, grown under an air-liquid interface, were mounted in Ussing chambers for the measurements of chloride short circuit current (I(sc)) and trans-epithelial resistance (R(t)). Addition of GSNO into the apical compartment of these chambers resulted in significant and sustained increase of I(sc) with an IC(50) of 3.2 +/- 1 mum (mean +/- 1 S.E.; n = 6). Addition of either glibenclamide or pre-treatment of Calu-3 cells with the soluble guanylate cyclase inhibitor 1H-(1,2,4)-oxadiazolo[4,3-a]quinoxalin-1-one totally prevented the GSNO-induced increase of I(sc). Conversely, BAY 41-2272, a sGC stimulator, increased I(sc) in a dose-response fashion. The GSNO increase of I(sc) was reversed by addition of two phosphatases (PP2A1, PP2A2) into the apical compartment of Ussing chambers containing Calu-3 monolayers. Oxy-myoglobin (oxy-Mb, 300 mum) added into the apical compartment of Ussing chambers either prior or after GSNO either completely prevented or immediately reversed the increase of I(sc). However, smaller concentrations of oxy-Mb (1-10 mum), sufficient to scavenge NO in the medium (as assessed by direct measurement of NO in the Ussing chamber using an ISO-NO meter) decreased I(sc) partially. Oxy-Mb did not reverse the increase of I(sc) following addition of GSNO and cysteine (50 mum). These findings indicate that GSNO stimulates Cl secretion via both cGMP-dependent and cGMP-independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号