首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
TCDD is known to reduce significantly the level of the functionally active form of glucose transporter type 4 (GLUT4) in vivo in adipose tissue and muscles. To study the mechanistic basis of this phenomenon, we conducted transient transfection and DNA deletion analysis in 3T3-L1 cells using chloramphenicol acetyltransferase (CAT) reporter plasmids containing the GLUT4 promoter joined to the bacterial CAT. It was found that in transfected control samples, CAT activity was significantly higher in cells transfected with p469CAT and p273CAT than those with p78CAT, indicating that the region between -78 and -273 contained elements that play major roles in transactivation of this gene. Treatment with TCDD decreased CAT activity with p469CAT and p273CAT, but not with p78CAT, indicating the same region to contain the element(s) affected by TCDD. A gel-shift (EMSA) analysis result indicated that TCDD shows the profound effect only on the nuclear proteins binding to the [(32)P]-labeled probe containing C/EBP response element equivalent of the -265 to -242 stretch of the GLUT4 promoter. The results of supershift analysis showed that TCDD caused a decrease in the tier of C/EBPalpha and an increase in that of C/EBPbeta among the proteins bound to this C/EBP response element. We studied the effect of TCDD in cells overexpressing either C/EBPalpha, C/EBPbeta, or C/EBPdelta through transient transfection of p273CAT or p469CAT. The results clearly showed that the effect of TCDD to suppress the CAT activity of p273 or p469 disappeared in those cells overexpressing C/EBPalpha or C/EBPbeta. These results implicate the C/EBP proteins to be the main mediator of suppressive action of TCDD on GLUT4 gene expression in 3T3-L1 cells.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号