首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies in animal models suggest that the integrin adhesion protein VLA-4 may play an important role in lymphopoiesis. The relationship between cell adhesion and lymphopoiesis in humans has been difficult to study because of the relative rarity and stringent in vitro growth requirements of lymphoid progenitors from normal adult human bone marrow. To determine the functional significance of VLA-4-mediated adhesion in human lymphopoiesis, we developed a culture system in which a bone marrow-derived adherent layer supports the formation of colonies of terminal deoxynucleotidyl transferase (TdT)-positive lymphoid precursor cells from normal adult human bone marrow. Limiting dilution studies were consistent with clonal origin of these colonies. CFU-TdT were enriched in the CD34+ bone marrow fraction, consistent with CD34 expression by other hematopoietic progenitors. CD34 expression and lack of lineage-specific markers in a significant proportion of the TdT+ colony cells suggest that the TdT+ CFU may represent an uncommitted lymphoid progenitor cell. Development of TdT+ colonies required direct contact with the adherent layer and was significantly inhibited by specific anti-VLA-4 alpha chain antibody, suggesting a functional role for the previously reported VLA-4-dependent adhesion of human B cell precursors to bone marrow-derived fibroblasts.  相似文献   

2.
We found that the stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4 (CXCR4), is expressed on human CD34+ bone marrow (BM) cells. Stringently FACS-sorted CD34+CXCR4+ BM cells completely lack myeloid, erythroid, megakaryocytic, and mixed colony-forming potential (myeloid progenitors), but give rise to B and T lymphoid progenitors, whereas CD34+CXCR4- BM cells can generate colonies formed by myeloid progenitors and can also develop into these lymphoid progenitors. Therefore, expression of CXCR4 on CD34+ BM cells can allow lymphoid progenitors to be discriminated from myeloid progenitors. Because CD34+CXCR4+ cells are differentiated from CD34+CXCR4- cells, multipotential progenitors located in the BM are likely to be negative for CXCR4 expression. CXCR4 seems to be expressed earlier than the IL-7R and terminal deoxynucleotidyl transferase during early lymphohemopoiesis. These results suggest that the expression of CXCR4 on CD34+ BM cells is one of the phenotypic alterations for committed lymphoid progenitors.  相似文献   

3.
Introducing lpr mutation prevents early mortality associated with IL-2Ralpha knockout (KO) mice, prompting us to determine the role of Fas in the immune system biology of IL-2Ralpha KO mice. Consistent with a defect in CD4+CD25+ regulatory T (Treg) cell expression, spontaneous lymphocyte activation in lymphoid organs was observed in 6-wk-old mice. In 16- to 22-wk-old mice, infiltration of leukocytes was observed in bone marrow, colon, lung, pancreas, lacrimal gland, and salivary gland, but not in heart, thyroid, liver, stomach, small intestine, ovary, and kidney. In the lymphocytes-infiltrated bone marrow, B cell lymphopoiesis was blocked at pro-B to pre-B/immature B stage, culminating in an age-dependent B cell loss in the periphery. These phenotypes were also observed in IL-2Ralpha KO mice bearing the lpr mutation (DM mice), indicating Treg cell function and the phenotypes attributed directly to Treg cell abnormality are largely Fas-independent. However, anemia and body weight loss were partially prevented, tissue cell apoptosis was inhibited, and lifespan was improved in the DM mice, demonstrating Fas-dependent elements in these processes. Our age-dependent, lifelong analysis of IL-2Ralpha KO and DM mice supports a CD4+CD25+ Treg cell-based mechanism for the abnormal immune system biology observed in IL-2Ralpha KO mice and provides a global view of the interplays among Treg cells, multiorgan inflammation, hemopoiesis, and apoptosis.  相似文献   

4.
5.
CD24 is a surface marker expressed in immature and mature B cells and involved in cellular adhesion and apoptosis. There are no data, which delineate the stage in early development of human B cells, which marks the expression of CD24. We studied lymphopoiesis in normal pediatric bone marrow (BM) and found that 1.5+/-0.2% of WBC were CD24(+) lymphocytes which did not express CD19. A significant fraction of these cells expressed low levels of CD45 (CD19- CD24+ CD45low cells). Small numbers of CD19- CD24+ CD45low cells were found in the regenerating BM of children with acute lymphoblastic leukemia after the completion of chemotherapy and in normal adult BM. Flow cytometric analyses have shown that CD19- CD24+ CD45low lymphocytes express CD10, CD34, CD79a, CD179a (VpreB), and TdT markers, i.e., displayed antigenic properties of early B-cell progenitors. Our data indicate that CD19- early B-cell progenitors in human BM express CD24, and that the expression of CD24 in human B-cell development precedes the expression of CD19.  相似文献   

6.
Highly purified human CD34+ hemopoietic precursor cells differentiate into mature T cells when seeded in vitro in isolated fetal thymic lobes of SCID mice followed by fetal thymus organ culture (FTOC). Here, this chimeric human-mouse FTOC was used to address the role of IL-9 and of the alpha-chain of the IL-9 receptor (IL-9Ralpha) in early human T cell development. We report that addition of the mAb AH9R7, which recognizes and blocks selectively the human high affinity alpha-chain of the IL-9R, results in a profound reduction of the number of human thymocytes. Analysis of lymphoid subpopulations indicates that a highly reduced number of cells undergo maturation from CD34+ precursor cells toward CD4+CD3-CD8-CD1+ progenitor cells and subsequently toward CD4+CD8+ double positive (DP) thymocytes. Addition of IL-9 to the FTOC resulted in an increase in cell number, without disturbing the frequencies of the different subsets. These data suggest that IL-9Ralpha signaling is critical in early T lymphoid development.  相似文献   

7.
Phosphatidic acid and its hydrolysis product, diacylglycerol, play potentially vital roles as extracellular messengers in numerous cellular systems and may play a key role in regulating hematopoiesis. In this study, we describe an ecto-phosphatidic acid phosphohydrolase that potentially regulates cellular responses to phosphatidic acid on bone marrow derived human hematopoietic progenitors. We partially purified hematopoietic progenitor ecto-PAPase using a novel in-gel phosphatase assay and then characterized the enzyme on phenotypically defined subpopulations of hematopoietic CD34+ progenitors isolated by flow cytometry. The most pronounced PAPase activity was confined to uncommitted CD34+/CD38+ hematopoietic progenitors, which lacked the expression of other lineage-associated antigens. We conclude that hematopoietic progenitor cells at various stages of maturation possess a potent ecto-PAPase, an enzyme well positioned to regulate progenitor cell growth and differentiation induced by phosphatidic acid and related lipids.  相似文献   

8.
The generation of erythroid, myeloid, and lymphoid cells from human fetal liver progenitors was studied in colony-forming cell (CFC) assays. CD38(-) and CD38(+) progenitors that expressed high levels of CD34 were grown in serum-deprived medium supplemented with kit ligand, flk2/flt3 ligand, GM-CSF, c-mpl ligand, erythropoietin, and IL-15. The resulting colonies were individually analyzed by flow cytometry. CD56(+) NK cells were detected in 21.9 and 9.9% of colonies grown from CD38(-) and CD38(+) progenitors, respectively. NK cells were detected in mostly large CD14(+)/CD15(+) myeloid colonies that also, in some cases, contained red cells. NK cells were rarely detected in erythroid colonies, suggesting an early split between the erythroid and the NK cell lineages. CD1a(+) dendritic cells were also present in three-quarters of the colonies grown from CD38(-) and CD38(+) progenitors. Multilineage colonies containing erythrocytes, myeloid cells, and NK cells were present in 13.7 and 2.7% of colonies grown from CD38(-) and CD38(+) progenitors, respectively. High proliferative-potential CFCs that generated multilineage colonies were also detected among both populations of progenitors. The total number of high proliferative-potential CFCs with erythroid, myeloid, and NK cell potential was estimated to be 2-fold higher in the CD38(+) fraction compared with the CD38(-) fraction because of the higher frequency of CD38(+) cells among CD34(++) cells. The broad distribution of multipotent CFCs among CD38(-) and CD38(+) progenitors suggests that the segregation of the erythroid, myeloid, and lymphoid lineages may not always be an early event in hemopoiesis. Alternatively, some stem cells may be present among CD38(+) cells.  相似文献   

9.
A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells   总被引:1,自引:0,他引:1  
The IL-2/IL-2R interaction is important for development and peripheral homeostasis of T regulatory (Treg) cells. IL-2- and IL-2R-deficient mice are not completely devoid of Foxp3+ cells, but rather lack population of mature CD4+CD25+Foxp3high Treg cells and contain few immature CD4+CD25-Foxp3low T cells. Interestingly, common gamma chain (gammac) knockout mice have been shown to have a near complete absence of Foxp3+ Treg cells, including the immature CD25-Foxp3low subset. Therefore, other gammac-cytokine(s) must be critically important during thymic development of CD4+CD25+Foxp3+ Treg cells apart from the IL-2. The present study was undertaken to determine whether the gammac-cytokines IL-7 or IL-15 normally contribute to expression of Foxp3 and Treg cell production. These studies revealed that mice double deficient in IL-2Rbeta and IL-7Ralpha contained a striking lack in the CD4+Foxp3+ population and the Treg cell defect recapitulated the gammac knockout mice. In the absence of IL-7R signaling, IL-15/IL-15R interaction is dispensable for the production of CD4+CD25+Foxp3+ Treg cells, indicating that normal thymic Treg cell production likely depends on signaling through both IL-2 and IL-7 receptors. Selective thymic reconstitution of IL-2Rbeta in mice double deficient in IL-2Rbeta and IL-7Ralpha established that IL-2Rbeta is dominant and sufficient to restore production of Treg cells. Furthermore, the survival of peripheral CD4+Foxp3low cells in IL-2Rbeta-/- mice appears to depend upon IL-7R signaling. Collectively, these data indicate that IL-7R signaling contributes to Treg cell development and peripheral homeostasis.  相似文献   

10.
We examined the effects of IL-9 on human mast cell development from CD34(+) cord blood (CB) and peripheral blood cells in serum-deprived cultures. IL-9 apparently enhanced cell production under stimulation with stem cell factor (SCF) from CD34(+) CB cells. A great majority of the cultured cells grown with SCF + IL-9 became positive for tryptase at 4 wk. In methylcellulose cultures of CD34(+) CB cells, IL-9 increased both the number and size of mast cell colonies grown with SCF. Furthermore, SCF + IL-9 caused an exclusive expansion of mast cell colony-forming cells in a 2-wk liquid culture of CD34(+) CB cells, at a level markedly greater than for SCF alone. Clonal cell cultures and RT-PCR analysis showed that the targets of SCF + IL-9 were the CD34(+)CD38(+) CB cells rather than the CD34(+)CD38(-) CB cells. IL-9 neither augmented the SCF-dependent generation of progeny nor supported the survival of 6-wk-cultured mast cells. Moreover, there was no difference in the appearance of tryptase(+) cells and histamine content in the cultured cells between SCF and SCF + IL-9. The addition of IL-9 increased numbers of mast cell colonies grown with SCF from CD34(+) peripheral blood cells in children with or without asthma. It is of interest that mast cell progenitors of asthmatic patients responded to SCF + IL-9 to a greater extent than those of normal controls. Taken together, IL-9 appears to act as a potent enhancer for the SCF-dependent growth of mast cell progenitors in humans, particularly asthmatic patients.  相似文献   

11.
IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.  相似文献   

12.
The interleukin 2 receptor alpha chain (IL-2Ralpha) is a component of high affinity IL-2 receptors and thus critically regulates T cell growth and other lymphoid functions. Five positive regulatory regions together control lineage-restricted and activation-dependent IL-2Ralpha induction in response to antigen and IL-2. We now show that TGF-beta cooperates with T cell receptor (TCR) signaling to increase IL-2Ralpha gene expression. Moreover, we identify a sixth positive regulatory region that regulates IL-2Ralpha expression in cells treated with anti-CD3 + anti-CD28 as well as TGF-beta and show that this region contains binding sites for Smad3, AP-1, and cAMP-responsive element-binding protein/ATF proteins. The importance of Smad complexes is indicated by impaired IL-2Ralpha induction by TGF-beta in CD4+ T cells from both Smad3-/- and Smad4-/- mice. Thus, we have identified a novel positive regulatory region in the IL-2Ralpha gene that mediates TGF-beta-dependent induction of the gene. These findings have implications related to IL-2Ralpha expression on activated T cells and regulatory T cells.  相似文献   

13.
Hemopoietic stem and progenitor cells ordinarily residing within bone marrow are released into the circulation following G-CSF administration. Such mobilization has a great clinical impact on hemopoietic stem cell transplantation. Underlying mechanisms are incompletely understood, but may involve G-CSF-induced modulation of chemokines, adhesion molecules, and proteolytic enzymes. We studied G-CSF-induced mobilization of CD34+ CD10+ CD19- Lin- and CD34+ CD10+ CD19+ Lin- cells (early B and pro-B cells, respectively). These mobilized lymphoid populations could differentiate only into B/NK cells or B cells equivalent to their marrow counterparts. Mobilized lymphoid progenitors expressed lymphoid- but not myeloid-related genes including the G-CSF receptor gene, and displayed the same pattern of Ig rearrangement status as their bone marrow counterparts. Decreased expression of VLA-4 and CXCR-4 on mobilized lymphoid progenitors as well as multipotent and myeloid progenitors indicated lineage-independent involvement of these molecules in G-CSF-induced mobilization. The results suggest that by acting through multiple trans-acting signals, G-CSF can mobilize not only myeloid-committed populations but a variety of resident marrow cell populations including lymphoid progenitors.  相似文献   

14.
We have previously demonstrated that purified human fibrinogen (Fg), a major plasma component removed during serum preparation, shows mitogenic properties towards lymphoma cells and normal human hematopoietic progenitors. Indeed, adding Fg with IL-3 to a serum-containing medium stimulates growth of human CD34+ progenitors. In this report, we show in serum-free medium, that this stimulating effect only occurs in the presence of IL-6. To clarify the cooperative effect between Fg and IL-6, the kinetics of IL-6 receptor (IL-6R) mRNA expression in CD34+ cells have been analyzed by semi-quantitative in situ hybridization. In the presence of both IL-3 and Fg, more cells express IL-6R mRNA, and this expression per cell is significantly greater than with each factor added separately. These results suggest that Fg does not promote the growth of normal cells by itself, but sensitizes the cells to cytokines. Fg behaves not as a "progression" factor but as a typical "competence" factor, which induces a faster and greater IL-6R expression in early human hematopoietic progenitors by cooperating with other cytokines.  相似文献   

15.
The nature of lymphoid progenitors and factor(s) determining commitment to either the T- or B-lymphocyte pathway are poorly understood in the human system. In this study, we generated a monoclonal antibody (MoAb), 18.6, that recognizes a cell surface antigen on a human lymphoid progenitor cell line (FL4.4). MoAb 18.6 reacted with lymphoid progenitor lines, B lymphoid cell lines, and myelomonocytic cell lines. It did not react with any T cell or erythroid leukemic cell lines. Two color FACS analyses of normal lymphoid tissues showed that MoAb 18.6 reacted with a majority of CD20+ mature B cells and a minority of CD64+ monocytes. Molecules of 3 different sizes with MW of 34, 45, and 68 Kd were precipitated with MoAb 18.6 from the lymphoid progenitor cell line. The 18.6 antigen was not expressed on a fetal liver-derived lymphoid progenitor-like cell line, FL1.4, which has the capacity to differentiate into microglia-shaped cells upon PMA-stimulation. Stimulation of FL1.4 cells with PMA induced expression of the 18.6 antigen within 24 hr and the microglia-shaped cells stained positively with MoAb 18.6. Finally, cloning of a cDNA that encoded the 18.6 antigen revealed that the 18.6 antigen is identical to the CD23 antigen. Taken together, these data suggest that the 18.6/CD23 antigen is expressed on lymphoid precursors at a very early stage of differentiation.  相似文献   

16.
17.
Effector responses induced by polarized CD4+ T helper 2 (Th2) cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor alpha chain (IL-4Ralpha). IL-4Ralpha-deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing non-healer or healer responses have yet to be elucidated. CD4+ T cell-specific IL-4Ralpha (Lck(cre)IL-4Ralpha(-/lox)) deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Ralpha signaling during cutaneous leishmaniasis in the absence of IL-4-responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Ralpha expression on CD4+ T cells and impaired IL-4-induced CD4+ T cell proliferation and Th2 differentiation. CD8+, gammadelta+, and NK-T cells expressed residual IL-4Ralpha, and representative non-T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Ralpha(-/lox) BALB/c mice, which developed ulcerating lesions following infection with L. major, Lck(cre)IL-4Ralpha(-/lox) mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in Lck(cre)IL-4Ralpha(-/lox) mice correlated with reduced numbers of IL-10-secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-gamma production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform non-healer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Ralpha signaling in L. major infection is revealed in which IL-4/IL-13-responsive non-CD4+ T cells induce protective responses.  相似文献   

18.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

19.
In humans, the pathways of memory and effector T cell differentiation remain poorly defined. We have dissected the functional properties of ex vivo effector-memory (EM) CD45RA-CCR7- T lymphocytes present within the circulating CD8+ T cell pool of healthy individuals. Our studies show that EM T cells are heterogeneous and are subdivided based on differential CD27 and CD28 expression into four subsets. EM(1) (CD27+CD28+) and EM(4) (CD27-CD28+) T cells express low levels of effector mediators such as granzyme B and perforin and high levels of CD127/IL-7Ralpha. EM(1) cells also have a relatively short replicative history and display strong ex vivo telomerase activity. Therefore, these cells are closely related to central-memory (CD45RA-CCR7+) cells. In contrast, EM(2) (CD27+CD28-) and EM(3) (CD27-CD28-) cells express mediators characteristic of effector cells, whereby EM(3) cells display stronger ex vivo cytolytic activity and have experienced larger numbers of cell divisions, thus resembling differentiated effector (CD45RA+CCR7-) cells. These data indicate that progressive up-regulation of cytolytic activity and stepwise loss of CCR7, CD28, and CD27 both characterize CD8+ T cell differentiation. Finally, memory CD8+ T cells not only include central-memory cells but also EM(1) cells, which differ in CCR7 expression and may therefore confer memory functions in lymphoid and peripheral tissues, respectively.  相似文献   

20.
T cell proliferation and cytokine production usually require stimulation via both the TCR/CD3 complex and the CD28 costimulatory receptor. Using purified human CD4+ peripheral blood T cells, we show that CD28 stimulation alone activates p38 alpha mitogen-activated protein kinase (p38 alpha). Cell proliferation induced by CD28 stimulation alone, a response attributed to CD4+CD45RO+ memory T cells, was blocked by the highly specific p38 inhibitors SB 203580 (IC50 = 10-80 nM) and RWJ 67657 (IC50 = 0.5-4 nM). In contrast, proliferation induced by anti-CD3 plus anti-CD28 mAbs was not blocked. Inhibitors of p38 also blocked CD4+ T cell production of IL-4 (SB 203580 IC50 = 20-100 nM), but not IL-2, in response to CD3 and CD28 stimulation. IL-5, TNF-alpha, and IFN-gamma production were also inhibited, but to a lesser degree than IL-4. IL-4 production was attributed to CD4+CD45RO+ T cells, and its induction was suppressed by p38 inhibitors at the mRNA level. In polarized Th1 and Th2 cell lines, SB 203580 strongly inhibited IL-4 production by Th2 cells (IC50 = 10-80 nM), but only partially inhibited IFN-gamma and IL-2 production by Th1 cells (<50% inhibition at 1 microM). In both Th1 and Th2 cells, CD28 signaling activated p38 alpha and was required for cytokine production. These results show that p38 alpha plays an important role in some, but not all, CD28-dependent cellular responses. Its preferential involvement in IL-4 production by CD4+CD45RO+ T cells and Th2 effector cells suggests that p38 alpha may be important in the generation of Th2-type responses in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号