首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Results are presented from a theoretical investigation of the acceleration of test electrons by a Langmuir wave excited by a short laser pulse at half the electron plasma frequency. Such a pulse penetrates into the plasma over a distance equal to the skin depth and efficiently excites Langmuir waves in the resonant interaction at the second harmonic of the laser frequency. It is shown that the beam of electrons accelerated by these waves is modulated into a train of electron bunches, but because of the initial thermal spread of the accelerated electrons, the bunches widen and begin to overlap, with the result that, at large distances, the electron beam becomes unmodulated.  相似文献   

2.
The mechanism of stochastic electron acceleration and heating by a picosecond laser pulse in underdense plasma is studied using particle-in-cell simulations and theoretical models. The formation of wide electron energy spectra in the simultaneously acting laser and plasma fields is analyzed. It is shown that electron scattering by turbulent plasma fluctuations excited through stimulated forward Raman scattering plays a governing role in the formation of high-energy tails in the electron distribution function.  相似文献   

3.
A particle-in-cell simulation is used to investigate ion acceleration by a femtosecond laser pulse propagating in an underdense plasma slab. In plasma slabs with different thicknesses, the ions are found to be accelerated by different mechanisms. It is shown that, for laser pulse intensities in the range (5–10)×1019 W/cm2, the ions are accelerated near the plasma-vacuum interface. __________ Translated from Fizika Plazmy, Vol. 27, No. 3, 2001, pp. 225–234. Original Russian Text Copyright ¢ 2001 by Kuznetsov, Esirkepov, Kamenets, Bulanov.  相似文献   

4.
The acceleration of ions of different species from a plasma slab under the action of a charge-separation electric field driven by hot and cold electrons is studied by using a hybrid Boltzmann-Vlasov-Poisson model. The obtained spatial and energy distributions of light and heavy ions in different charge states demonstrate that the model can be efficiently used to study the ion composition in a multispecies expanding laser plasma. The regular features of the acceleration of ions of different species are investigated. The formation of compression and rarefaction waves in the halo of light ion impurity, as well as their effect on the energy spectrum of the accelerated ions, is analyzed. An approach is proposed that makes it possible to describe the production of fast ions by laser pulses of a given shape. It is shown that the energy of fast ions can be increased markedly by appropriately shaping the pulse. The effect of heating of the bulk of the cold target electrons on the ion acceleration is discussed.  相似文献   

5.
The problem of radiation from a pulsed dipole source in a moving magnetized plasma described by a diagonal permittivity tensor is considered. An exact solution describing the spatiotemporal behavior of the excited electromagnetic field is obtained. The shape of an electromagnetic pulse that is generated by the source and propagates at different angles to both the direction of the external magnetic field and the direction of plasma motion is investigated. It is found that even nonrelativistic motion of the plasma medium can substantially influence the parameters of radiation from prescribed unsteady sources.  相似文献   

6.
A study is made of nonquasineutral vortex structures in a plasma with a magnetic field B z in which the charges separate on a spatial scale equal to the magnetic Debye radius r B=B z/4πen e. The electric field arising due to charge separation leads to radial expansion of the ions, thereby destroying the initial electron vortex. It is shown that the ion pressure gradient stops ion expansion in a nonquasineutral electron vortex and gives rise to a steady structure with a characteristic scale on the order of r B. With the electron inertia taken into account in the hydrodynamic approximation, the magnetic vortex structure in a hot plas mamanifests itself in the appearance of a “hole” in the plasma density.  相似文献   

7.
Results from experimental studies of a short-wave plasma dipole transceiver antenna are presented. The efficiency of the plasma receiving antenna is estimated, and the optimal frequency range for excitation and reception under the given experimental conditions is determined.  相似文献   

8.
Results are presented from experimental studies of the behavior of dust grains in a track plasma produced by an accelerated proton beam. Dynamic dust structures in such a plasma are obtained for the first time, and their spatiotemporal evolution is thoroughly investigated. The structures develop from a dust spiral, which abruptly transforms with increasing dust density into a differentially rotating dust cloud across which dust-sound waves (including spiral waves generated by the dense central core) propagate. As time elapses, the dust cloud loses its fragments and gradually vanishes. At constant experimental conditions, the lifetime of the structures attains a few minutes.  相似文献   

9.
A scheme is proposed for producing a quasi-monoenergetic ion bunch by irradiating a foil with two subsequent ultrashort laser pulses—a prepulse followed by a stronger main pulse. Results are presented from numerical simulations that illustrate the scheme and determine the space-time and energy characteristics of the accelerated ions.  相似文献   

10.
A previously developed method for describing vortex structures is used to construct electrostatic vortices in a plasma in an external magnetic field. An equation for the radial electric field that gives rise to azimuthal electron drift in crossed electric (E r ) and magnetic (B z ) fields is derived without allowance for the magnetic field of the electron currents. Two types of the resulting electrostatic vortex structures with a positive and a negative electric potential at the axis are analyzed. The results obtained are compared with experimental data on vortex structures.  相似文献   

11.
Jet structures formed during laser irradiation of porous targets with an average density of ?? = 1?30 mg/cm3 were studied experimentally by using the diagnostic complex of the Mishen facility. To study complicated plasma structures, the experimental data were processed using specially elaborated mathematical methods. The probability of the emergence of jet plasma structures in plane open-pore triacetate cellulose targets was studied as a function of the parameter ??d, where ?? is the average mass density and d is the target thickness. Analysis of the experimental results and their comparison with the existing data on the jet structures formed during laser irradiation of solid-density targets allowed the authors to reveal the characteristic features and mechanisms of the development of large-scale plasma jets.  相似文献   

12.
A new comparatively simple quasi-one-dimensional physicomathematical model of plasma acceleration in an ablative pulsed plasma thruster with a capacitive energy storage is proposed. In spite of its simplicity, the model adequately reflects the main physical processes occurring in the thruster channel in the course of plasma blob acceleration: the blob dynamics, plasma radiation, absorption of radiation by the Teflon channel walls, ablation of the wall material, and plasma ionization. The results of computer simulations agree well with the experimental results.  相似文献   

13.
Forces acting on toroidal vortices in an unbounded medium (plasma vortices in air and vortex rings in air and water) are investigated. A solution to the equations describing such votrices is obtained. It is shown that this solution satisfactorily agrees with experiment. Based on the experimental results and the solution obtained, the drag coefficient C x of such vortices is found. For the same Reynolds numbers, the value of C x may be much less than the drag coefficient of a drop-shaped axisymmetric body (0.045), which is known to be the best streamlined object.  相似文献   

14.
It is shown that a curved magnetic field can be used to separate ions in a multicomponent plasma. Without selective ion preheating, the separation over one cycle is inefficient: the separated ion fractions will only be enriched with ions of the corresponding isotopes. Selective ion cyclotron resonance heating makes it possible to achieve essentially a complete separation of the ions.  相似文献   

15.
Results are presented from experimental studies of the electromagnetic acceleration of a hydrogen or deuterium plasma in an inverse Z-pinch geometry. The acceleration dynamics of the plasma shell was simulated in a zero-dimensional model and was measured with magnetic probes. The ion energy spectrum in the plasma flow was determined with the help of ion collectors by the time-of-flight technique.  相似文献   

16.
The effect of the temperature of the corona electrode on the electrical characteristics of a corona discharge was studied experimentally. A modified Townsend formula for the current-voltage characteristic of a one-dimensional corona is proposed. Gasdynamic and thermal characteristics of a positive corona discharge in a coaxial electrode system are calculated. The calculated results are compared with the experimental data.  相似文献   

17.
Electron-ion collisions in a high-density plasma in strong electromagnetic fields are considered. The applicability condition for the approximate model of pair collisions in strong fields are determined. It is shown that this condition is identical to the condition for the plasma to be transparent. Investigations were carried out by the test particle method generalized to the case of several scattering centers. An accurate calculation of short-range collisions is provided by a “jump” method that is based on the exact solution to the problem of the motion of a particle in a Coulomb potential. This method can also be applied in other approaches to simulating a collisional plasma (such as particle-in-cell and molecular dynamics methods).  相似文献   

18.
A nonquasineutral vortex structure with a zero net current is described that arises as a result of electron drift in crossed magnetic and electric fields, the latter being produced by charge separation on a spatial scale of about the magnetic Debye radius r B = |B|/(4πen e ). In such a structure with a radius of rr B , the magnetic field is maintained by a drift current on the order of the electron Alfvén current J Ae = m e c 3/(2e) and can become as strong as B ? m e c 2/(er). Estimates show that, in a plasma with a density of n e = 1021?1023 cm?3 and with nonzero electron vorticity driven by high-power laser radiation on a time scale on the order of θ pe ?1 , magnetic fields with a strength of B ~ 108?109 G are generated on micron and submicron scales. The system with closed current that is considered in the present paper can also serve as a model of hot spots in the channel of a Z-pinch.  相似文献   

19.
A study is made of the motion of a plasma with a frozen-in magnetic field along the electrode surfaces in the direction transverse to the magnetic field. A one-dimensional problem of an electrode sheath is formulated in which all of the quantities depend only on the coordinate orthogonal to the electrode surface. Viscous plasma heating, plasma cooling via heat conduction, and other kinetic effects are taken into consideration. Account is also taken of the effect of plasma acceleration and of the related current that is transverse to the electrode surfaces and, due to the Hall effect, carries the magnetic flux away from the cathode and toward the anode. Solving the one-dimensional problem with a constant electric current and constant magnetic field shows that, in a sheath that forms near the cathode, the solution becomes self-similar, the plasma mass grows linearly, and the electron magnetization parameter remains unchanged. It is found that the anode sheath cannot be described in the magnetohydrodynamic approximation, according to which the plasma density in the sheath rapidly vanishes, while the current through the sheath remains constant. This difficulty can be overcome by incorporating some of the nonhydrodynamic effects (primarily, electron dispersion), thereby making the problem physically correct. Solving the problem numerically shows that a decrease in the plasma density in the anode sheath due to the Hall effect gives rise to additional significant plasma acceleration.  相似文献   

20.
The quasi-steady ion distribution in a plasma with a single ion species and with low-intensity ion acoustic turbulence is found. Conditions are determined under which the stimulated scattering of ion acoustic waves by ions leads to the formation of a superthermal ion distribution function that decreases with increasing velocity more gradually than does a Maxwellian distribution function. It is found that the plasma conductivity increases as a result of a decrease in the turbulence level due to an enhancement of the Cherenkov damping of ion acoustic waves by resonant ions, whose number increases because of the formation of a gradually decreasing distribution of superthermal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号