首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphine-3-glucuronide--a potent antagonist of morphine analgesia   总被引:11,自引:0,他引:11  
In this study, morphine-3-glucuronide (M3G), the major plasma and urinary metabolite of morphine, was shown to be a potent antagonist of morphine analgesia when administered to rats by the intra-cerebroventricular (i.c.v.) route. The antagonism of morphine analgesia was observed irrespective of whether i.c.v. M3G (2.5 or 3.0 micrograms) was administered 15 mins prior to or 15 mins after i.c.v. morphine (20 micrograms). When M3G (10mg) was administered intraperitoneally (i.p.) to rats 30-40 mins prior to morphine (1.5mg i.p.), the analgesic response was significantly reduced compared to administration of morphine (1.5mg i.p.) alone. It was further demonstrated that i.c.v. M3G (2.0 micrograms) antagonized the analgesic effects of subsequently administered i.c.v. morphine-6-glucuronide (0.25 micrograms).  相似文献   

2.
The effects of intravenous (i.v.) and intracerebroventricular (i.c.v.) administration of morphine on jejunal and colonic motility were investigated in conscious dogs chronically prepared with strain gage transducers and compared to those of i.c.v. DAGO, a highly selective opiate mu agonist. Morphine i.v. (100 micrograms/kg) and i.c.v. (10 micrograms/kg) administered 3 hrs after a meal stimulated colonic motility for 3-5 hrs and induced a phase 3 on the jejunum, which appeared after a 15-60 min delay following i.c.v. administration. These effects were reproduced by DAGO administration at doses of 2 micrograms/kg i.v. and 0.2 micrograms/kg i.c.v. The effects of i.v., but not those of i.c.v., morphine and DAGO on jejunal and colonic motility were blocked by a previous administration of naloxone (100 micrograms/kg i.v.). The colonic stimulation but not the jejunal phase 3 induced by i.c.v. morphine and DAGO were blocked by RO 15-1788 (1 mg/kg i.v.), a selective benzodiazepine antagonist. The colonic stimulation induced by i.v. morphine or DAGO was not modify by i.v. RO 15-1788. It is concluded that i.c.v. administration of mu agonist involved benzodiazepine but not opiate receptors to stimulate colonic motility in dogs.  相似文献   

3.
A Do?rul  O Ye?ilyurt  A I?imer 《Life sciences》2001,69(18):2081-2090
The effects of neomycin on the development of tolerance to morphine antinociception were examined in mice. Because neomycin did not readly cross blood brain barrier, we examined the effects of neomycin following systemic, intracerebroventricular (i.c.v.) and intrathecal (i.t.) injections on the morphine tolerance. Daily subcutaneous (s.c.), i.c.v. and i.t. injections of morphine produced tolerance regardless of route of administration. Both i.c.v. and i.t. neomycin, which alone produced no changes in the basal tail flick latencies, significantly attenuated the development of tolerance to antinociception produced by repeated systemic morphine, while intraperitoneal (i.p.) administration of neomycin did not affect morphine tolerance. Further, i.c.v. and i.t. neomycin attenuated the development of tolerance to antinociception produced by repeated i.c.v. and i.t. morphine, respectively, which were not attenuated by systemic neomycin. This results indicate a potential role for neomycin-sensitive Ca2+ channels on the development of tolerance to the morphine antinoception.  相似文献   

4.
The effects of Ro 15-1788 and ethyl-beta-carboline-3-carboxylate (beta-CCE) were studied alone and in combination on the behavioral performances of squirrel monkeys. Under one procedure, performances maintained by food were suppressed by electric shock presentation (punishment or "conflict" procedure). Under a second procedure, responding was maintained either by food or electric shock delivery under a 5-min fixed-interval schedule. Doses of beta-CCE between 0.1 and 3.0 mg/kg, i.m., produced graded decreases in punished responding which were reversed by pretreatment with Ro 15-1788 (1.0 - 10.0 mg/kg, i.m.). Low doses of beta-CCE (0.03 - 0.3 mg/kg, i.m.) increased responding of monkeys maintained by shock presentation, but did not affect food-maintained responding; higher doses of beta-CCE decreased responding under both schedules. These effects of beta-CCE are opposite those produced by the benzodiazepines under this procedure. Ro 15-1788 (1.0 mg/kg i.m.) antagonized the effects of beta-CCE, producing a shift to the right in the dose-response curves. These findings provide further support for the view that beta-CCE and Ro 15-1788 produce effects mediated by the same benzodiazepine receptor recognition site.  相似文献   

5.
The influence of Ro 15-1788 and bicuculline on the action of GABA-positive drugs (muscimol), GABA cethyl ester, piracetam and depakine and benzodiazepine tranquilizers (diazepam, phenazepam) on motivated aggression has been studied. It has been shown that Ro 15-1788 which has a weak antiaggressive effect selectively antagonizes the anti-aggressive effect of tranquilizers but not that of GABA-positive drugs. Bicuculline antagonizes antiaggressive activity of the drugs of both types. The action of these antagonists on the effect of the drugs under study as regards the analgetic activity of morphine was also studied. It has been shown that Ro 15-1788 antagonizes the potentiation of morphine analgesia caused by diazepam. At the same time Ro 15-1788 does not influence morphine analgesia potentiated by muscimol. Bicuculline removes the potentiation of morphine analgesia caused both by diazepam and muscimol it is concluded that bicuculline-sensitive GABA receptors modulate the antiaggressive effect of benzodiazepines and their influence on the analgetic action of opiates.  相似文献   

6.
J M Witkin  J E Barrett 《Life sciences》1985,37(17):1587-1595
The selective benzodiazepine receptor antagonist, Ro 15-1788, produced behavioral effects in pigeons at doses at least 100 times lower than those previously reported to possess intrinsic pharmacological activity in mammals. In contrast to its effects in mammalian species, in pigeons, Ro 15-1788 does not exhibit partial agonist activity. Key-peck responses of pigeons were studied under a multiple fixed-interval 3-min, fixed-interval 3-min schedule in which the first response after 3-min produced food in the presence of red or white keylights. In addition, every 30th response during the red keylight produced a brief electric shock (punishment). Under control conditions, punished responding was suppressed to 30% of unpunished response levels. Ro 15-1788 (0.01 mg/kg, i.m.) increased unpunished response rates by 33% without affecting rates of punished responding. Doses of 0.1 to 1.0 mg/kg Ro 15-1788 produced dose-related decreases in both punished and unpunished responding. As is characteristic of other benzodiazepines, midazolam (0.1 and 0.3 mg/kg, i.m.) markedly increased punished responding but had little effect on rates of unpunished responding. Ro 15-1788 antagonized the increases in punished responding and also reversed the rate-decreasing effects of higher doses of midazolam. However, the effectiveness of Ro 15-1788 as a benzodiazepine antagonist was limited by its intrinsic activity: rate-decreasing doses of Ro 15-1788 were unable to completely reverse behavioral effects of midazolam. Midazolam was an effective antagonist of the behavioral effects of Ro 15-1788 (up to 0.1 mg/kg) but midazolam did not influence the rate-decreasing effects of 1.0 mg/kg Ro 15-1788 across a 100-fold dose range. In the pigeon, the behavioral effects of relatively low doses of Ro 15-1788 (0.01-0.1 mg/kg) appear to be related to benzodiazepine receptor mechanisms, whereas other systems appear to be involved in the effects of higher doses.  相似文献   

7.
Neuropeptide FF (NPFF) belongs to an opioid-modulating peptide family. NPFF has been reported to play important roles in the control of pain and analgesia through interactions with the opioid system. However, very few studies examined the effect of supraspinal NPFF system on analgesia induced by opiates administered at the peripheral level. In the present study, intracerebroventricular (i.c.v.) injection of NPFF (1, 3 and 10 nmol) dose-dependently inhibited systemic morphine (0.12 mg, i.p.) analgesia in the mouse tail flick test. Similarly, i.c.v. administration of dNPA and NPVF, two agonists highly selective for NPFF(2) and NPFF(1) receptors, respectively, decreased analgesia induced by i.p. morphine in mice. Furthermore, these anti-opioid activities of NPFF and related peptides were blocked by pretreatment with the NPFF receptors selective antagonist RF9 (10 nmol, i.c.v.). These results demonstrate that activation of central NPFF(1) and NPFF(2) receptors has the similar anti-opioid actions on the antinociceptive effect of systemic morphine.  相似文献   

8.
M Schwarz  L Turski  K H Sontag 《Life sciences》1984,35(14):1445-1451
Diazepam (0.4-4 mg/kg i.p.) reduced the spontaneous tonic activity in the electromyogram (EMG) recorded from the gastrocnemius-soleus muscle of spastic mutant Han-Wistar rats in a dose-dependent manner. The muscle relaxant effect of diazepam was antagonized by the benzodiazepine antagonists Ro 15-1788 (5 mg/kg i.p.), beta-CCM (2 mg/kg i.p.) and CGS 8216 (5 mg/kg i.p.), but not by EMD 41717 (50 mg/kg i.p.). These results add further support to the hypothesis that Ro 15-1788, CGS 8216 and beta-CCM do antagonize all pharmacological effects of benzodiazepines while EMD 41717 displays more selectivity in antagonizing the different actions of benzodiazepines.  相似文献   

9.
Neuropharmacological analysis of previously revealed antihypoxic activity of benzodiazepines (BDZ) has been performed in experiments on mice exposed to hypoxia. Antihypoxic effect of diazepam is shown to be antagonized by the central BDZ receptor blocker, Ro 15-1788. A certain degree of antihypoxic activity also abolished by Ro 15-1788 is exhibited by hypothetical ligands of BDZ receptors: inosin, nicotinamide, ethyl-beta-carboline-3-carboxylate. The effect of dipyridamole, a drug with high affinity for BDZ receptors of the peripheral type is not antagonized by Ro 15-1788, another evidence of Ro 15-1788 affinity precisely to the central BDZ receptors. GABA-mimetics (muscimol and GABA cetyl ester) were also found to have marked antihypoxic activity. Unlike BDZ receptor agonists, this effect is reduced by bicuculline and not by Ro 15-1788. The data obtained suggest that antihypoxic activity of BDZ is caused by their direct interaction with the central BDZ receptors, probably with the type which is not modulated by GABAA receptors.  相似文献   

10.
In mice pretreated intracerebroventricularly (i.c.v.) with pertussis or cholera toxins, effects of neuropeptide FF (NPFF), on hypothermia and morphine-induced analgesia, were assessed. NPFF and a potent NPFF agonist, 1DMe (0.005-22 nmol) injected into the lateral ventricle decreased morphine analgesia and produced naloxone (2.5 mg x kg(-1), s.c.)-resistant hypothermia after administration into the third ventricle. Cholera toxin (CTX 1 microg, i.c.v.) pretreatment (24 or 96 h before) inhibited the effect of 1DMe on body temperature, but failed to reverse its anti-opioid activity in the tail-flick test. CTX reduced hypothermia induced by a high dose of morphine (8 nmol, i.c.v.) but not the analgesic effect due to 3 nmol morphine. Pertussis toxin (PTX) pretreatment inhibited both morphine-hypothermia and -analgesia but did not modify hypothermia induced by 1DMe. The present results suggest that NPFF-induced hypothermia depends on the stimulation of Gs (but not Gi) proteins. In contrast, anti-opioid effects resulting from NPFF-receptor stimulation do not involve a cholera toxin-sensitive transducer protein.  相似文献   

11.
The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50 = 2.3 +/- 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation (KD) of 1.0 +/- 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

12.
The effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on pain sensitivity, on morphine analgesia, on morphine tolerance and withdrawal were investigated in mice. The heat-radiant tail-flick test was used to assess antinociceptive threshold. Intracerebroventricular (i.c.v.) administration of PACAP alone had no effect on pain sensitivity but in a dose of 500 ng, it significantly diminished the analgesic effect of a single dose of morphine (2.25 mg/kg, s.c.). PACAP (500 ng, i.c.v.) significantly increased the chronic tolerance to morphine and enhanced the naloxone (1 mg/kg, s.c.)-precipitated withdrawal jumping. Theophylline (1 mg/kg, i.p.) pretreatment significantly enhanced the effect of PACAP on morphine analgesia but the effects of PACAP on tolerance and withdrawal were unaffected upon theophylline administration. On the grounds of our previous studies with vasoactive intestinal polypeptide (VIP), it appears that different receptors are involved in the effects of PACAP in acute and chronic morphine actions. Our results indicate that PACAP-induced actions likely participate in acute and chronic effects of morphine and suggest a potential role of PACAP in opioid analgesia, tolerance and withdrawal.  相似文献   

13.
Ghrelin, an acylated 28-amino peptide secreted in the gastric endocrine cells, has been demonstrated to stimulate the release of growth hormone, increase food intake, and inhibit pro-inflammatory cascade, etc. Ghrelin mainly combines with its receptor (GHS-R1α) to play the role in physiological and pathological functions. It has been reported that ghrelin plays important roles in the control of pain through interaction with the opioid system in inflammatory pain and acute pain. However, very few studies show the effect of supraspinal ghrelin system on antinociception induced by intraperitoneal (i.p.) administration of morphine. In the present study, intracerebroventricular (i.c.v.) injection of ghrelin (0.1, 1, 10 and 100 nmol/L) produced inhibition of systemic morphine (6 mg/kg, i.p.) analgesia in the tail withdrawal test. Similarly, i.c.v. injection GHRP-6 and GHRP-2 which are the agonists of GHS-R1α, also decreased analgesia effect induced by morphine injected intraperitoneally in mice. Furthermore, these anti-opioid activities of ghrelin and related peptides were not blocked by pretreatment with the GHS-R1α selective antagonist [d-Lys3]-GHRP-6 (100 nmol/L, i.c.v.). These results demonstrated that central ghrelin and related peptides could inhibit the analgesia effect induced by intraperitoneal (i.p.) administration of morphine. The anti-opioid effects of ghrelin and related peptides do not interact with GHS-R1a. These findings may pave the way for a new strategy on investigating the interaction between ghrelin system and opioids on pain modulation.  相似文献   

14.
Abstract: The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50= 2.3 ± 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation constant ( K D) of 1.0 ± 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

15.
Enterostatin (VPDPR), an anorexigenic peptide derived from the amino terminus of procolipase, significantly inhibited analgesia induced by the mu-opioid agonist morphine (5 mg/kg, s.c.) after i.c.v. administration to mice at a dose of 100 nmol. On the other hand, VPDPR (approximately 200 nmol, i.c.v.) did not attenuate analgesia induced by the kappa-opioid agonist D-Phe-D-Phe-D-Nle-D-Arg-NH2 (100 microg/mouse, i.c.v.) or delta-opioid agonist DTLET (4 nmol/mouse, i.c.v.). VPDPR (100 nmol, i.c.v.) significantly improved amnesia induced by scopolamine (0.2 mg/kg, i.p.) in mice. However, VPDPR did not enhance memory in normal mice at the same dose.  相似文献   

16.
The benzodiazepine antagonist properties of Ro 15-1788 were evaluated in rats trained to discriminate between saline and either 1.0 mg/kg of diazepam or 10 mg/kg of pentobarbital in a two-choice discrete-trial shock avoidance procedure. When administered alone, 1.0 mg/kg of diazepam and 10 mg/kg of pentobarbital produced comparable amounts of drug-appropriate responding (> 84%), whether rats were trained to discriminate between diazepam or pentobarbital and saline. Ro 15-1788 (3–32 mg/kg, p.o.), administered 10 min before diazepam or pentobarbital, produced a dose-related blockade of the discriminative effects of diazepam in both groups of rats, but was completely ineffective in blocking the discriminative effects of pentobarbital. The dose-effect curve for the discriminative effects of diazepam was shifted to the right in a parallel fashion 3- and 13-fold by 10 and 32 mg/kg of Ro 15-1788, respectively, indicating that Ro 15-1788 acts as a surmountable, competitive antagonist of diazepam. When administered alone, Ro 15-1788 (32–100 mg/kg, p.o.) produced primarily saline-appropriate responding, although 100 mg/kg of Ro 15-1788 produced drug-appropriate responding in one out of eight rats. When administered orally 30 min after diazepam, Ro 15-1788 (32 mg/kg) completely reversed within 10 min the discriminative effects of diazepam. The blockade of diazepam's discriminative effects by 32 mg/kg of Ro 15-1788 appeared to last at least as long (approximately 2 hr) as the effects of diazepam alone.  相似文献   

17.
Enterostatin (VPDPR), an anorexigenic peptide derived from the amino terminus of procolipase, significantly inhibited analgesia induced by the μ-opioidagonist morphine (5 mg/kg, s.c.) after i.c.v. administration to mice at a dose of 100 nmol. On the other hand, VPDPR (~200 nmol, i.c.v.) did not attenuate analgesia induced by the κ-opioid agonist D-Phe-D-Phe-D-Nle-D-Arg-NH2 (100 μg/mouse, i.c.v.) or δ-opioid agonist DTLET (4 nmol/mouse, i.c.v.). VPDPR (100 nmol, i.c.v.) significantly improved amnesia induced by scopolamine (0.2 mg/kg, i.p.) in mice. However, VPDPR did not enhance memory in normal mice at the same dose.  相似文献   

18.
Endothelin-1-induced nociception   总被引:3,自引:0,他引:3  
Intracerebroventricular (i.c.v.) or intrathecal (i.t.) administration of morphine to mice antagonized the abdominal constriction induced by an i.p. injection of endothelin-1 (ET-1; 0.1 mg/kg). The ED50 values (95% confidence intervals) were 39.3 (16.5-80.2) ng and 1.5 (0.8-4.9) ng, respectively. The antagonism of ET-1-induced abdominal constriction by morphine was blocked by naloxone (1.0 mg/kg, s.c.) or by 24 h pretreatment with beta-funaltrexamine (beta-FNA; 8.84 micrograms, i.c.v.). These results demonstrate for the first time that the stimulus resulting from an i.p. injection of ET-1 is transmitted via ascending (pain) pathways that are subject to attenuation by opioid (mu) receptor activation. Hence, ET-1-induced abdominal constriction is a new pain model which, given the other pharmacology of ET-1, might represent a unique model with potential specific utility for anginal or other visceral pain.  相似文献   

19.
Increased gastrointestinal motility in mice as one of the withdrawal symptoms of commonly abused drugs like diazepam or morphine and its possible mechanism of action was studied. Male Laka mice (20-25 g) were made addict to either diazepam (20 mg/kg, ip for 7 days) or morphine (10 mg/kg, sc for 9 days). Withdrawal symptoms were noted 24 hr after the last injection of diazepam or morphine. The animals were injected with Ro 15-1788 (flumazenil) (1 mg/kg, ip) or naloxone (2 mg/kg, ip) in the respective group to precipitate the withdrawal symptoms. Gastrointestinal motility was assessed by charcoal-meal test. Animals developed tolerance to acute sedative effect of diazepam, and similarly to the acute nociceptive action of morphine. On abrupt cessation of these drugs after chronic treatment the animals showed hyperlocomotion and hyperreactivity in diazepam withdrawal group and hyperalgesia on hot plate in morphine withdrawal groups, respectively. Increase in gastrointestinal motility was observed in all the drug withdrawal groups. Treatment with respective antagonists, Ro 15-1788 (flumazenil) and naloxone precipitated the withdrawal symptoms. The results suggest the involvement of both central and peripheral receptors of benzodiazepines and opioid (mu) receptors in the withdrawal symptoms of the benzodiazepines and morphine, respectively.  相似文献   

20.
曹威  周仲福 《生理学报》1989,41(4):388-394
We have reported that intracerebroventricular (i. c. v.) injection of 1-4 ng of CCK-8 to the rat produced a remarkable antagonistic effect on morphine analgesia. In order to study the species specificity and the site of action, CCK-8 was microinjected into the PAG of the rabbit, and its influence on morphine analgesia and electroacupuncture analgesia was observed. The latency of the escape response (ERL) to radiant heat focused on the snout was measured as an index of the pain threshold. Microinjections were made via cannulae chronically implanted into the PAG. The drug solutions were delivered in a volume of 1 microliter, at a speed of 0.125 microliter/min. The ERL was measured for a period of 60 or 70 minutes at 10 min intervals. 1. CCK-8 administered unilaterally to the PAG of the rabbit at a dose of 3 ng antagonized the analgesia induced by morphine (4 mg/kg, i. v.) by 73% (P less than 0.001), and reduced the analgesic effect of electroacupuncture by 67% (P less than 0.001). These effects were dose-dependent within the range from 1.5 ng to 6.0 ng. The effect of CCK-8 was reversed by CCK receptor blocker proglumide (4 microliters, intra-PAG injection). Unsulfated CCK-8 (CCK-us) had no effect in this regard. These results indicate that in the PAG of the rabbit, exogenously administered CCK-8 was capable of antagonizing opioid analgesia by the activation of CCK receptors. 2. Two groups of rabbits were given with morphine (2 mg/kg, i. v.) and simultaneous injection of CCK-8 antiserum (CCK-AS, 1 microliter) or normal rabbit serum (NRS) into the PAG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号