首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the mechanisms underlying the marked induction of ornithine decarboxylase (ODC) activity by hypotonic treatment and its rapid decay upon reversal to isotonicity in primary cultures of adult rat hepatocytes. Upon hypotonic treatment, ODC synthesis rate increased progressively whereas the amount of ODC mRNA increased only about twofold. In addition, ODC was stabilized severalfold. ODC activity rapidly decreased upon restoration of isotonicity, owing to immediate and nearly complete suppression of ODC synthesis and 3-6-fold stimulation of ODC decay. The stimulation of ODC decay caused by restoration of isotonicity was mostly independent of time and protein synthesis. ODC decay was also stimulated by putrescine, even under hypotonic conditions, depending on time and new protein synthesis. Restoration of isotonicity and putrescine treatment together caused a synergistic stimulation of ODC decay, confirming that these act by different mechanisms.  相似文献   

2.
3.
This report examines the effect of hypotonic stress on ornithine decarboxylase (ODC) activity and ODC mRNA concentrations in LLC-PK1 cells. Earle's balanced salts solution minus glucose (EBSS-G) with decreasing concentrations of NaCl was utilized as the ODC induction medium. Hypotonic EBSS-G increased both the concentration of ODC mRNA and the specific activity of ODC in LLC-PK1 cells. Actinomycin D and cycloheximide prevented the increase in enzyme activity resulting from hypotonic stress. Actinomycin D was also a potent inhibitor of ODC mRNA expression resulting from hypotonic stress. Cycloheximide had very little effect on the induction of ODC mRNA in cells incubated in hypotonic EBSS-G. The magnitude of the increase in both ODC mRNA concentrations and enzyme activity was dependent on the incubation time in hypotonic media. The increase in ODC mRNA concentrations preceded the elevation in enzyme activity. ODC mRNA concentrations and the specific activity of ODC increased as a function of decreasing media osmolarity. The addition of putrescine, spermidine, and spermine to EBSS-G containing reduced NaCl suppressed the increase in LLC-PK1 ODC activity related to hypotonic stress. In contrast, these polyamines did not prevent the increase in ODC mRNA resulting from hypotonic shock. Furthermore, it was demonstrated that hypotonic stress increases ODC mRNA levels and enzyme activity in four additional cell lines from two different species. Based on these results it is suggested that one or more signal transducers associated with cell volume expansion enhance expression of the ODC gene.  相似文献   

4.
We have examined the regulation of two key enzymes that control polyamine biosynthesis-L-ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) - by agents increasing cAMP in S49 lymphoma cells. Incubation of wild type S49 cells with beta-adrenergic agonists (terbutaline or isoproterenol) inhibited ODC and SAMDC activities rapidly (less than 2 hr). more quickly than these agents arrested the cells in the G1 phase of the cell cycle. The beta-adrenergic antagonist propranolol blocked inhibition of ODC activity produced by isoproterenol, but only if added simultaneously or less than 4 hr after the agonist. Incubation of wild type S49 cells with cholera toxin or PGE1 also inhibited ODC activity. Decreases in ODC activity produced by beta-adrenergic agonists, cholera toxin, PGE1 or dibutyryl cAMP were all enhanced by the phosphodiesterase inhibitor Ro 20-1724. Results of studies of ODC and SAMDC activity in S49 variants having lesions in the pathway of cAMP generation and action were as follows: kin- cells (which lack cAMP-dependent protein kinase activity) showed no inhibition of ODC by any agent; AC- cells (which have absent nucleotide coupling units in their adenylate cyclase system) only demonstrated inhibition in response to dibutyryl cAMP; UNC cells (which have deficient coupling of hormone receptors and adenylate cyclase) only demonstrated inhibition in response to dibutyryl cAMP and cholera toxin, and beta-depleted cells (which have a decreased number of beta-adrenergic receptors) responded as did wild type cells except for absent response to isoproterenol. We conclude that inhibition of ODC and SAMDC activity in S49 cells is an early response to agents that increase cAMP and that this action occurs via the "classical" pathways of activation of adenylate cyclase and protein kinase. These results in S49 cells contrast with evidence in other systems in which cAMP has been suggested to enhance polyamine biosynthesis, perhaps through alternative mechanisms.  相似文献   

5.
Cholera toxin activated beef thyroid cyclic AMP-dependent protein kinase in a dose (0.2 to 8 microgram/ml)-related fashion. Thus, when beef thyroid slices were incubated with toxin (8 microgram/ml) for 90 minutes and then assayed for protein kinase, the activity ratio (i.e. -cyclic AMP/+cyclic AMP) increased from 0.32 +/- 0.02 to 0.77 +/- 0.06. The toxin (5 microgram/ml)-induced increase was abolished by inclusion of ganglioside GM1 in the incubation medium (I50, 0.7 microgram/ml), whereas, gangliosides GD1a and GT1 were without effect. In contrast, TSH-activated protein kinase was unaffected by ganglioside addition. Cholera toxin increased rat thyroid ornithine decarboxylase (ODC) activity in-vitro in a dose (0.1 to 10 microgram/ml)-related fashion [basal, 100 cf cholera toxin (10 microgram/ml), 1500 pmol 14CO2/g tissue/30 min]. The toxin (1 microgram/ml)- (but not TSH-) induced increase in ODC was abolished by inclusion of ganglioside Ga and GT1 were without effect. Cholera toxin stimulation of ODC was inhibited by indomethacin or iodide as are the stimulatory effects of TSH or dibutyryl cyclic AMP. These results demonstrate that although there are differences in the TSH and cholera toxin responses with respect to receptor (ganglioside) interaction, they nevertheless elicit similar intracellular responses in thyroid.  相似文献   

6.
Ornithine decarboxylase (ODC) inductions by cholera toxin and by the phorbol ester tumor promoter, TPA, were compared in wild-type Chinese hamster ovary (CHO) cells and in mutant cells having altered cyclic AMP-dependent protein kinase activity. The aim of these studies was to determine whether cyclic AMP-dependent protein kinase is involved in these inductions. The time course and the magnitude of ODC inductions by either 100 ng/ml cholera toxin or 100 ng/ml TPA were similar in wild-type cells with a maximum at 3-4 hours after treatment and a return to unstimulated levels by 8 hours. Induction of ODC by cholera toxin was suppressed more than 80% in the four protein kinase mutants studied (10215, 10248, 10260, and 10265), strongly implicating a cyclic AMP-dependent kinase step in the mechanism of induction. Similar results were found with the cyclic AMP analog 8-Br-cyclic AMP and the phosphodiesterase inhibitor, methyl-isobutylxanthine. The induction of ODC by TPA, on the other hand, was only partially inhibited (approximately 50%) in three of four mutants. Lower ODC activity in two mutants stimulated by cholera toxin or TPA whose kinetics were studied in more detail could not be ascribed to a reduced affinity (Km) of ornithine for the enzyme, but appeared to be due to reduced catalytic activity (Vmax) in the extracts. These results suggest that the induction of ODC by TPA proceeds by a mechanism which is only partially dependent on an intact cyclic AMP-dependent protein kinase activity.  相似文献   

7.
The estrogen antagonists tamoxifen and monohydroxytamoxifen are also classified as partial estrogen agonists. In infantile rats, estradiol induced a single peak of uterine ODC activity at 6h following injection regardless of the extent of induction by various estradiol doses. By contrast, the timing of the ODC activity peak induced by tamoxifen and monohydroxytamoxifen was highly dependent upon the dosing conditions and was delayed to 18 h at lower tamoxifen doses. In immature rats, tamoxifen and monohydroxytamoxifen induced two peaks of uterine ODC activity resembling those induced by estradiol. Both ODC activity peaks were delayed by 9 h, without decreases in peak heights, by a 50-fold tamoxifen dose reduction. In all experiments the initial appearance of antiestrogen- and estradiol-induced ODC activity corresponded to initial uterine wet weight gain regardless of dosing condition. Thus, when dose-related temporal shifts are taken into account, tamoxifen and monohydroxytamoxifen are complete agonists with respect to induction of uterine weight gain and ODC activity.  相似文献   

8.
Human peripheral lymphocytes were isolated from whole blood and exposed to culture medium of reduced osmolality. This hypotonic treatment led to a significant increase in the frequencies of chromosomal aberrations when the osmolality was reduced to 60 mOsm/kg H2O and below. Maximum damage occurred when the hypotonic treatment was done 27 or 30 h after starting the cultures. We also looked for the induction of sister-chromatid exchanges (SCE) by hypotonic culture conditions, but the SCE frequencies were not influenced.  相似文献   

9.
The JAR human placental choriocarcinoma cell line transports serotonin, accumulating the monoamine inside the cell against a concentration gradient. The transport is energized by an NaCl gradient. Tricyclic (imipramine and desipramine) and non-tricyclic (paroxetine and fluoxetine) antidepressants inhibit the transporter markedly, but reserpine and 5-hydroxytryptophan do not. Ouabain, gramicidin, and nigericin, which reduce or abolish the transmembrane Na+ gradient, and phloridzin, which interferes with glucose transport into the cells, inhibit the transport. Preincubation of the cells with glucose-free medium also causes similar inhibition. The activity of the serotonin transporter in this cell line is stimulated in response to overnight (16-h) incubation with increasing concentrations of cholera toxin (0.1-1,000 ng/ml). Under these conditions the stimulation is maximal at 10 ng/ml cholera toxin (3.1 +/- 0.2-fold). Cholera toxin increases the cAMP content of these cells by several hundredfold within 2 h. Isobutylmethylxanthine (100 microM), dibutyryl cAMP (100 microM), and forskolin (100 microM) mimic the action of cholera toxin, eliciting a 1.6-2.5-fold stimulation of the serotonin transporter activity. The stimulatory effect of cholera toxin is antagonized significantly by simultaneous incubation of the cells with 50 microM N-(2-aminoethyl)-5-isoquinolinesulfonamide, a protein kinase inhibitor. The effect of cholera toxin on serotonin transport is specific because, under similar conditions, cholera toxin inhibits 3-O-methyl-D-glucose transport and does not influence taurine transport in this cell line. There is also no significant change in the protein content of the cells after cholera toxin treatment. Kinetic analysis reveals that cholera toxin causes an increase in the maximal velocity (7.89 +/- 0.67 to 17.55 +/- 1.06 pmol/mg of protein/5 min) and a decrease in the Michaelis-Menten constant (0.52 +/- 0.09 to 0.29 +/- 0.04 microM). These data show that the JAR human placental choriocarcinoma cell line expresses a high affinity serotonin transporter that is sensitive to inhibition by antidepressants and that the activity of the transporter is under cAMP-dependent regulation.  相似文献   

10.
Abstract: Glucocorticoids, cholera toxin and high plating density all increase the activity of tyrosine 3-monooxygenase (TH) in cultured PC12 pheochromocytoma cells. Glucocorticoids increase enzyme activity in cells treated with cholera toxin and in cells grown at high plating density. Glucocorticoids also increase the content of stored catecholamines in the cells. In cells cultured under routine conditions, glucocorticoids primarily increase the stores of dopamine. The addition of ascorbate to the culture medium increases the storage of norepinephrine in both steroid-treated and untreated cells. Incubation of the cells in media containing 56 n M K+ causes the release of the same percentage of stored dopamine from steroid-treated as from untreated cells. Steroid-treated cells contain more dopamine than do untreated cells and therefore, in response to high K+, the steroid-treated cells secrete more dopamine than do untreated cells. We conclude that the activity of tyrosine 3-monooxygenase in PC12 cells can be regulated by several distinct mechanisms; that glucocorticoids cause a coordinate increase in TH activity and in catecholamine storage; that steroids increase the storage of catecholamines in a releasable pool; and that the steroid-induced increase in catecholamine storage may result in increased secretion of catecholamines from steroid-treated cells.  相似文献   

11.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

12.
Abstract Indomethacin was examined for its capacity to inhibit increases in adenosine-3',5'-monophosphate (cAMP) concentrations in Chinese hamster ovary (CHO) cells treated with cholera toxin. When added to the culture medium 1 h prior to cholera toxin (100 ng/ml), indomethacin (500 μg/ml) exhibited maximum protection against the typical increase in cAMP. Application of indomethacin at the same time as cholera toxin or up to 3 h after the toxin progressively decreased the drug's capacity to block further increases in cAMP. The drug appeared to block adenylate cyclase activity because addition of forskolin to drug-treated cells did not elicit a cAMP response. Binding of 125I-labeled cholera toxin to indomethacin-treated cells was also reduced by at least 50%. These data indicate that indomethacin's inhibitory effect on cAMP formation in cholera toxin-treated cells could be explained by its capacity to alter adenylate cyclase activity and cholera toxin binding.  相似文献   

13.
The exotoxins of Bordetella pertussis and Vibrio cholera have been used to investigate signal transduction in the human T-cell lymphoma Jurkat. Stimulation of the cells, leading to an increase in cytoplasmic free calcium, could be achieved by the anti-T-cell receptor complex antibody OKT3 and by pertussis holotoxin (PTHT), or its B-subunit (PTB), but not by cholera holotoxin (CTHT) or its B-subunit (CTB). Both holotoxins ADP-ribosylated specifically G-proteins in the plasma membrane of intact cells, while their B-subunits had no ADP-ribosyltransferase activity. Incubation of the cells with CTHT led to a state of unresponsiveness to all stimulants. CTB was without any effect, indicating that the ADP-ribosyltransferase activity of cholera toxin (located in the A-subunit of the holotoxin) was necessary for the inhibition of cellular signalling. The inhibitory effect of cholera toxin on the pertussis toxin action was not due to a blockade of pertussis toxin interaction with the cell surface, because pertussis toxin was still able to ADP-ribosylate membrane proteins in cholera toxin treated intact cells. In addition, the cholera toxin mediated inhibition was not due to elevated levels of cyclic-AMP, as forskolin (a direct activator of the adenylate cyclase) and no inhibitory effect. The stimulating effect of PTHT was independent of its ADP-ribosyltransferase activity, because it could also be obtained by the B-subunit alone. In addition, the increase of cytoplasmic free calcium after stimulation by PTHT clearly preceded the ADP-ribosylation. Pre-treatment with PTHT, PTB or OKT3, led to a long lasting increase in the level of intracellular Ca2+ in Jurkat cells, which could not, therefore, be stimulated further. Inhibition by cholera holotoxin of the stimulation by OKT3 and pertussis toxin (PTHT and PTB) imply that the mitogenic effect of pertussis toxin is perhaps mediated via the T-cell antigen receptor signalling cascade. The presented data do not support the idea that a pertussis toxin-sensitive G-protein is involved in coupling the T-cell antigen receptor to the phospholipase C.  相似文献   

14.
We studied the effect of the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA), which activates protein kinase-C, on porcine granulosa cells in culture. PMA as well as cholera toxin, forskolin, and hCG increased cAMP accumulation. PMA further augmented the elevation in cAMP accumulation induced by cholera toxin, forskolin, and hCG. In the same cell culture model, hCG induced a time-dependent increase in the 3 beta-hydroxy-5-ene steroid dehydrogenase (3 beta HSD) mRNA levels with a maximal 3-fold stimulation obtained at 8-16 h of incubation with 1 IU hCG/ml. PMA inhibited the increase in 3 beta HSD mRNA levels induced by hCG in a dose-dependent manner. The phorbol ester also inhibited the increase in 3 beta HSD mRNA levels stimulated by LH as well as cholera toxin and forskolin and the cAMP analogs (Bu)2cAMP and 8-bromo-cAMP. Activation of protein kinase-C by mezerein similarly inhibited hCG stimulation of 3 beta HSD mRNA levels. The present data indicate that activation of the protein kinase-C pathway induces generation of cAMP, but causes a near-complete inhibition of the stimulatory effects of hCG, LH, forskolin, cholera toxin, and cAMP analogs on 3 beta HSD mRNA levels in porcine granulosa cells in culture.  相似文献   

15.
16.
In order to determine whether uteri synthesize and store IgA, rats were sacrificed and uterine tissues placed in organ culture for 24 h under the following conditions: (i) at various stages of the estrous cycle, (ii) following ovariectomy and treatment with estradiol, and (iii) after intrauterine immunization with sheep red blood cells (SRBC). When IgA was analyzed in tissues both prior to and following organ culture and in incubation media, no significant increases in total IgA were observed, nor was IgA release into media reduced when cycloheximide, a potent inhibitor of protein synthesis, was present. Analysis of uterine tissues indicated that IgA levels remained relatively constant throughout the estrous cycle and was not markedly increased when ovariectomized rats were treated with estradiol (2 micrograms/day) for 3 days. These results indicate that tissue IgA levels remain relatively constant even during estradiol treatment, when uterine luminal IgA levels are known to increase markedly. Analysis of ovariectomized rats that received intrauterine immunizations with SRBC indicated tenfold greater amounts of IgA in immunized tissues than did uteri from intact or ovariectomized animals. Despite this, no evidence of protein synthesis was obtained, based on measurements of total IgA content before and after organ culture or inhibition of IgA synthesis by cycloheximide. These results indicate that IgA synthesis under the conditions examined is not occurring, but that uterine tissue may serve as a significant storage depot for IgA synthesized either distal to or within uterine tissues at times other than those analyzed in the present study.  相似文献   

17.
Ornithine decarboxylase activity in high density, stationary phase rat hepatoma (HTC) cells in suspension culture has an extremely short half-life of between 5 and 15 minutes, as measured after inhibiting protein synthesis. Following dilution of these cells into fresh medium there is a large increase in ornithine decarboxylase activity, reaching a peak often several hundred times the initial level at about four hours. At least part of this stimulation is due to an increase in the apparent half-life of the enzyme, to between 30 and 90 minutes. Evidence is presented that the supply of amino acids can control the turnover of ODC under some conditions. For example supplementing high density cells with glutamine, asparagine, serine, glycine and proline, either singly or together, increases ODC activity and decreases its apparent turnover. The stimulation by amino acids is enhanced by serum.  相似文献   

18.
Epidermal growth factor (EGF) stimulated the formation of inositol trisphosphate, inositol bisphosphate, and inositol phosphate in density-arrested BALB/c/3T3 cells pretreated for 1.5-4 h with cholera toxin, a potent activator of adenyl cyclase, and isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor. Concomitant addition of cholera toxin, IBMX, and EGF to cells did not increase inositol phosphate levels, and pretreatment with both agents was more effective than pretreatment with either alone. Pre-exposure of cells to cholera toxin and IBMX also enhanced the increase in inositol phosphates occurring in response to platelet-derived growth factor (PDGF). Preincubation of cells with cholera toxin and IBMX in the presence of cycloheximide abolished the effects of these agents on EGF- and PDGF-stimulated inositol phosphate production as well as the lesser increase in inositol phosphate formation produced by cholera toxin and IBMX in the absence of hormone. Preincubation of cells with cycloheximide did not affect EGF binding or the ability of PDGF to stimulate inositol phosphate formation. Cycloheximide also precluded EGF-induced inositol phosphate production when presented to cells 3 h after addition of cholera toxin and IBMX. These findings show that, under the appropriate conditions, EGF is capable of stimulating inositol phosphate formation in a nontransformed cell line.  相似文献   

19.
Abstract Ibuprofen, an inhibitor of prostaglandin synthesis in eukaryotic cells, was shown to inhibit the accumulation of 3',5'-cyclic adenosine monophosphate (cyclic AMP) in Chinese hamster ovary (CHO) cells exposed to cholera toxin. The inhibition was dose dependent, with a dose of 100 μg/ml reducing the cholera toxin response by approximately 50%, and maximal inhibition was observed when the drug was applied to the cells simulataneously with or 1 h before the toxin. Although ibuprofen also inhibited adenylate cyclase stimulation by forskolin, suggesting a nonspecific effect, the drug had no effect on cholera toxin-induced cyclic AMP accumulation when added to the culture medium 15 min or more after the toxin.  相似文献   

20.
Since none of the hormones which activate adenylate cyclase in other tissues have been found to activate adenylate cyclase or to induce tyrosine aminotransferase in cultured Reuber hepatoma cells (H35), despite the stimulatory effects of cyclic AMP derivatives on the latter enzyme, we tested the ability of cholera toxin to influence these processes. At low concentrations cholera toxin was found to mimic the ability of cyclic AMP derivatives to selectively stimulate the synthesis of the aminotransferase. Adenylate cyclase and protein kinase activity were also enhanced, but only after a lag period as in other systems. Specific phosphorylation of endogenous H1 histone was also shown to be increased by cholera toxin treatment. The increase in tyrosine aminotransferase activity is due to an increase in de novo synthesis as shown by radiolabeling experiments utilizing specific immunoprecipitation. The activity of another soluble enzyme induced by dibutyryl cyclic AMP, PEP carboxykinase, was also stimulated by exposure of H35 cells to cholera toxin. Combinations of cholera toxin and dexamethasone led to greater than additive increases in the activity of both the aminotransferase and carboxykinase. Close coupling of cyclic AMP production with protein kinase activation and enzyme induction was suggested by the observation that the ED50 values for the stimulation of adenylate cyclase, cyclic AMP production, protein kinase, and tyrosine aminotransferase activities were found to be the same (5–7 ng/ml) within experimental error. The results indicate that the adenylate cyclase system in H35 cells is functionally responsive and they support the suggestion that activation of protein kinase is functionally linked to induction of specific enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号