首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Abstract: GSH, GSSG, vitamin E, and ascorbate were measured in 14-day cultures of chick astrocytes and neurons and compared with levels in the forebrains of chick embryos of comparable age. Activities of enzymes involved in GSH metabolism were also measured. These included -γ-glutamylcysteine synthetase, GSH synthetase, γ-glutamyl cyclotransferase, γ-glutamyltranspeptidase, glutathione transferase (GST), GSH peroxidase, and GSSG reductase. The concentration of lipid-soluble vitamin E in the cultured neurons was found to be comparable with that in the forebrain. On the other hand, the concentration of vitamin E in the astrocytes was significantly greater in the cultured astrocytes than in the neurons, suggesting that the astrocytes are able to accumulate exogenous vitamin E more extensively than neurons. The concentrations of major fatty acids were higher in the cell membranes of cultured neurons than those in the astrocytes. Ascorbate was not detected in cultured cells although the chick forebrains contained appreciable levels of this antioxidant. GSH, total glutathione (i.e., GSH and GSSG), and GST activity were much higher in cultured astrocytes than in neurons. γ-Glutamylcysteine synthetase activity was higher in the cultured astrocytes than in the cultured neurons. GSH reductase and GSH peroxidase activities were roughly comparable in cultured astrocytes and neurons. The high levels of GSH and GST in cultured astrocytes appears to reflect the situation in vivo. The data suggest that astrocytes are resistant to reactive oxygen species (and potentially toxic xenobiotics) and may play a protective role in the brain. Because enzymes of GSH metabolism are generally well represented in cultured astrocytes and neurons these cells may be ideally suited as probes for manipulating GSH levels in neural tissues in vitro. Cultured astrocytes and neurons should be amenable to the study of the effects of various metabolic insults on the GSH system. Such studies may provide insights into the design of therapeutic strategies to combat oxidative and xenobiotic stresses.  相似文献   

2.
Glutathione synthetase deficiency results in decreased cellular glutathione content and consequent overproduction of 5-oxoproline. L-serine in borate buffer inhibits γ-glutamyl transpeptidase, the major catabolic enzyme for glutathione. Treatment of glutathione synthetase deficient fibroblasts with 40mM serine and borate for 24 hours produced more than a 2-fold increase in cellular glutathione content. L-serine alone led to a smaller increase in glutathione level, and borate alone was without effect. On exposure to serine and borate, 5-oxoproline formation from L-glutamate was decreased to normal levels in glutathione synthetase deficient fibroblasts, presumably secondary to feedback inhibition of γ-glutamylcysteine synthetase by the increased intracellular glutathione concentration. Cellular free amino acid content was generally unaffected by such exposure although increases were observed in serine and phosphoserine. This model system suggests that γ-glutamyl transpeptidase inhibition may be a rational approach to alleviating the effects of glutathione synthetase deficiency.  相似文献   

3.
Summary

Glutathione (GSH) plays several important roles in the protection of cells against oxidative damage, particularly following exposure to xenobiotics. Ferric nitrilotriacetate (Fe-NTA) is a potent depletor of GSH and also enhances tissue lipid peroxidation. In this study, we show the effect of Fe-NTA treatment on hepatic GSH and some of the glutathione metabolizing enzymes, oxidant generation and liver damage. The level of hepatic GSH and the activities of glutathione reductase, glutathione S-transferase, glutathione peroxidase, and glucose 6-phosphate dehydrogenase all decrease following Fe-NTA administration. In these parameters the maximum decrease occurred at 12 h following Fe-NTA treatment. In contrast, γ-glutamyl transpeptidase was increased at this time. Not surprisingly, the increase in the activity of γ-glutamyl transpeptidase and decreases in GSH, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione S-transferase were found to be dependent on the dose of Fe-NTA administered. Fe-NTA administration also enhances the production of H2O2 and increases hepatic lipid peroxidation. Parallel to these changes, Fe-NTA enhances liver damage as evidenced by increases in serum transaminases. Once again, the liver damage is dependent on the dose of Fe-NTA and is maximal at 12 h. Pretreatment of animals with antioxidant, butylated hydroxy anisole (BHA), protects against Fe-NTA-mediated hepatotoxicity further supporting the involvement of oxidative stress in Fe-NTA-mediated hepatic damage. In aggregate, our results indicate that Fe-NTA administration eventuates in decreased hepatic GSH, a fall in the activities of glutathione metabolizing enzymes and excessive production of oxidants, all of which are involved in the cascade of events leading to iron-mediated hepatic injury.  相似文献   

4.
The food antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are shown to be metabolized to covalent binding intermediates and various other metabolites by prostaglandin H synthase and horseradish peroxidase. BHA was extensively metabolized by horseradish peroxidase (80% conversion of parent BHA into metabolites) resulting in the formation of three dimeric products. Only two of these dimers were observed in prostaglandin H synthase-catalyzed reactions. In contrast to BHA, BHT proved to be a relatively poor substrate for prostaglandin synthase and horseradish peroxidase, resulting in the formation of a small amount of polar and aqueous metabolites (23% conversion of parent BHT into metabolites). With arachidonic acid as the substrate, prostaglandin H synthase catalyzed the covalent binding of [14C]BHA and [14C]BHT to microsomal protein which was significantly inhibited by indomethacin and glutathione. The covalent binding of BHA and its metabolism to dimeric products were also inhibited by BHT. In contrast, the addition of BHA enhanced the covalent binding of BHT by 400%. Moreover, in the presence of BHA, the formation of the polar and aqueous metabolites of BHT was increased and two additional metabolites, BHT-quinone methide and stilbenequinone, were detected. The increased peroxidase-dependent oxidation of BHT in the presence of BHA is proposed to occur via the direct chemical interaction of BHA phenoxyl radical with BHT or BHT phenoxyl radical. These results suggest a potential role for phenoxyl radicals in the activation of xenobiotic chemicals to toxic metabolites.  相似文献   

5.
d- and dl-alpha-tocopheryl succinate inhibited growth and caused morphological changes in mouse melanoma (B-16), mouse neuroblastoma (NBP2), and rat glioma (C-6) cells in culture. To study whether the effects of alpha-tocopheryl (vitamin E) succinate on tumor cells are mediated by antioxidant mechanisms, the effects of lipid-soluble antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) were compared with those of vitamin E succinate. Results showed that these antioxidants produced alterations on the growth and morphology of neuroblastoma, melanoma, and glioma cells which are similar to those produced by vitamin E succinate; however, the extent of the effect depended upon the type of antioxidant and the form of tumor cells. These data suggest that the effects of vitamin E succinate on tumor cells may be mediated, in part, by antioxidant mechanisms.  相似文献   

6.
Increasing concentrations of malonaldehyde and beta-propiolactone were increasingly mutagenic with 7 mutants of Salmonella typhimurium, 5 of which mutated bya frameshift mechanism and 2 of which mutated through base-pair substitution. The antioxidants vitamin C, vitamin E, selenium and butylated hydroxytoluene (BHT) at 3 logarithmic concentrations markedly reduced mutagenesis in those strains which mutated by frameshift mechanism.  相似文献   

7.
The importance of γ-glutamyl transpeptidase, the key enzyme of the γ-glutamyl cycle and of thiols for the uptake of amino acids into rat pancreatic islets was investigated. Both serine–borate, an inhibitor of γ-glutamy transpeptidase, and serine which does not inhibit this enzyme, but probabaly is a competitive inhibitor of amino acid uptake, inhibited of glutamine. The inhibitory effect of serine-borate was not greater than that of serine alone. The uptake of glutamine was not affected by either GSH (reduced glutathione) or diamide (a thiol oxidant). Niether substances affected the uptake of leucine. The results indicate that the uptake of glutamine by rat pancreatic islets is not dependent on the functioning of γ-glutamyl transpeptidase and that thiols are not important for the uptake of the amino acids glutamine and leucine.  相似文献   

8.
The effect of commonly used food antioxidants on recombinant tumor necrosis factor alpha (rTNF-alpha)-induced cytotoxicity, growth enhancement and adhesion has been evaluated. Butylated hydroxyanisole (BHA) and 4-hydroxymethyl-2,6-di-t-butylphenol (HBP) were the only two of nine antioxidants that completely inhibited rTNF-alpha-induced cytotoxicity in L929 and WEHI 164 fibrosarcoma cells. Ethoxyquin, propyl gallate and butylated hydroquinone only partially inhibited rTNF-alpha-induced cytotoxicity, while the antioxidants butylated hydroxytoluene (BHT), alpha-tocopherol, ascorbic acid and thiodipropionic acid had minimal effects. The only difference between the molecular structure of the efficient HBP and the non-efficient BHT, is a hydroxymethyl group instead of a hydroxyl group on the phenolic ring. Neither BHA nor BHT inhibited the activation of NF kappa B after 10 or 60 min challenge with rTNF-alpha in L929 cells. BHA also inhibited rTNF-alpha-induced, but not rIL-1 beta-induced growth enhancement in FS-4 fibroblasts. Further, BHA blocked both rTNF-alpha-induced and rIL-1 beta-induced prostaglandin E2 synthesis in FS-4 fibroblasts. BHA inhibited the rTNF-alpha-induced release of arachidonic acid in both FS-4 and L929 cells, suggesting that BHA inhibits cellular phospholipase(s). Neither alpha-tocopherol nor BHA inhibited rTNF-alpha-induced adhesiveness of human endothelial cells. The results indicate that BHA is a specific and potent inhibitor of rTNF-alpha- and rTNF-beta-induced cytotoxicity, as well as of rTNF-alpha-induced growth enhancement.  相似文献   

9.
Different antioxidants and free radical scavengers on aflatoxin production are analysed. The different compounds at different concentration were used: buthylated hydroxyanisole (BHA), buthylated hydroxytoluene (BHT), α-tocopherol (vitamin E), ascorbic acid (vitamin C), reduced glutathione, cysteine, cysteamine. The above compounds were tested in culture ofAspergillus parasiticus supplemented with carbon tetrachloride, a potent stimulating agent of aflatoxin biosynthesis. Cysteamine and BHA highly inhibited the aflatoxin production induced by carbon tetrachloride, the inhibition decreased by lowering the concentration. On the contrary, vitamin E, vitamin C, reduced glutathione and cysteine further enhanced the carbon tetrachloride stimulating effect. The addition of the above compounds did not significantly affect the growth of the fungal mycelia.  相似文献   

10.
The glutathione content and the activities of several enzymes in its metabolism, glutathione reductase, glutathione peroxidase and γ-glutamyl transpeptidase, were assayed in uteri obtained from estrogen-treated rats and in R3230AC mammary adenocarcinomas obtained from ovariectomized, intact and estrogen-treated hosts. Normal mammary glands, obtained 10–12 days post-partum, were also examined for these parameters.A daily pharmacological dose of 0.4 μg of estradiol-17β induced a maximal increase in uterine weight and in reduced glutathione (GSH); higher doses of estrogen did not significantly increase either of these parameters. Levels of oxidized glutathione (GSSG) were comparable in both estrogen-treated and untreated rats. The time course of the estrogen-induced uterotrophic response was associated with increases in glutathione reductase, glutathione peroxidase and γ-glutamyl transpeptidase activities with the increased GSH level preceding the increase in uterine weight. Compared to neoplasms from intact or ovariectomized animals, tumors from estrogen-treated hosts exhibited significant decreases in levels of GSSG and GSH, as well as in glutathione reductase and glutathione peroxidase activities, but demonstrated a significant elevation of γ-glutamyl transpeptidase activity. Normal glands from lactating rats had decreased GSH levels, lower activities of glutathione reductase and glutathione peroxidase, but elevated γ-glutamyl transpeptidase activity versus tumors from intact rats. Tumors from estrogen-treated rats more closely resembled mammary glands during lactation. The divergent growth responses elicited by estrogen in the uterus and mammary tumor are correlated with the observed changes in GSH levels and enzymes involved in glutathione metabolism.  相似文献   

11.
Hydralittoralis exhibits high γ-glutamyl transpeptidase activity, i.e., about 12% of the activity (determined with glutathione) of rat kidney. Histochemical studies show that the enzyme is located mainly in the gastric and sub-hypostome regions; the enzyme is also present in the tentacles and basal disc. These results and the presence of other enzymes of the γ-glutamyl cycle suggest that the cycle plays a role in the metabolism of glutathione in hydras and that γ-glutamyl transpeptidase may function in their digestive and absorptive processes and possibly also in the behavioral response to glutathione.  相似文献   

12.
Studies from our laboratory demonstrated that the free radical scavenger, nitro blue tetrazolium, and iron chelators, such as dypyrydil, are potent inhibitors of arachidonic acid oxidation and platelet function. In the present study, we have evaluated the effects of known antioxidants, such as butylated hydroxyanisol (BHA), butylated hydroxytoluene (BHT), and diphenylamine, on arachidonic acid metabolism and platelet function. Diphenylamine, a common dye intermediate used in hair color formulations, was the most potent inhibitor of arachidonic acid metabolism by platelet cyclooxygenases. Diphenyl and BHA were also potent inhibitors of arachidonic acid oxidation. Other diphenyl analogues and BHT were relatively poor inhibitors of arachidonic-mediated platelet activation. Results of this study, as well as those of our earlier studies, suggest that antioxidants and iron chelators prevent arachidonic acid metabolism and alter platelet function by interfering with the heme/arachidonic acid interaction and blocking cyclooxygenase metabolites essential for the formation of thromboxane A2, a potent platelet agonist.  相似文献   

13.
The phenolic antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert.-butylhydroquinone (TBHQ) were reassessed for mutagenic activity using the recently developed Salmonella tester strains TA97, TA102 and TA104, and in addition TA100. None of the phenolic antioxidants showed mutagenic activity, either with or without metabolic activation. At doses of 100 micrograms/plate and higher all 3 phenolic antioxidants exhibited toxic effects. A modification of the assay using the preincubation procedure with strain TA104 did not affect mutation frequencies. Combinations of BHA and BHT, tested to detect possible synergistic effects, did not exert mutagenic activity.  相似文献   

14.
A direct examination of the inter-organ cycle of glutathione metabolism was made by determining glutathione levels in plasma obtained from various blood vessels of the rat. High levels of GSH were found in hepatic vein plasma, relative to arterial and systemic venous levels, reflecting translocation of GSH from the liver to the plasma. Renal vein plasma has a level that is 20% of arterial plasma indicating that the kidney removes glutathione from plasma not only by glomerular filtration (which can account for 20–30% of the glutathione removed), but also by a non-filtration mechanism. Inhibitors of γ-glutamyl transpeptidase decrease the fraction of glutathione removed by the kidney to a value approaching that filtered, indicating that the non-filtration mechanism involves γ-glutamyl transpeptidase.  相似文献   

15.
Ascites hepatoma cell line AH-130 was tested for the ability to transport various amino acids and glutathione before and after γ-glutamyl transpeptidase of the cells was affinity-labeled and inactivated by 6-diazo-5-oxo-L-norleucine, a glutamine analog. The rate of uptake of alanine, glycine, leucine and glutamine by the cells remained unchanged after γ-glutamyl transpeptidase was inactivated by this affinity label. This indicated that γ-glutamyl transpeptidase of the cell was not involved in the transport process of these amino acids tested. The uptake of glutathione was also tested before and after affinity labeling the enzyme. The total amount of the radioactivity incorporated into the cells was not significantly affected by the enzyme inactivation. However, the relative amount of incorporated intact glutathione was found to be slightly but significantly increased after membraneous γ-glutamyl transpeptidase was inactivated by the affinity label, while that of component amino acid, glycine, was found to decrease. This indicated that glutathione was taken up by the cell in its intact form as well as in degraded forms into its component amino acids, and γ-glutamyl transpeptidase in the ascites tumor cell AH-130 seemed to be involved in the metabolic process via the latter system.  相似文献   

16.
S S Tate  M W Dunn  A Meister 《Life sciences》1976,18(10):1145-1148
The activities of γ-glutamyl transpeptidase and other enzymes of the γ-glutamyl cycle, a series of reactions that catalyzes the synthesis and utilization of glutathione, were studied in the rabbit retina. Histochemical studies demonstrated that γ-glutamyl transpeptidase is localized in the visual receptor cells and the retinal pigment epithelium. Rat and mouse retinas revealed similar localizations of transpeptidase. These findings are in accord with the view that γ-glutamyl transpeptidase is involved in the transport of amino acids between the retinal pigment epithelium and the avascular visual receptor cells.  相似文献   

17.
The widely used food additives butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) react with oxyhemoglobin, thereby forming methemoglobin. The reaction rates were measured using visible spectroscopy, and second order rate constants were established for BHA and compared with p-hydroxyanisole. Using ESR we investigated the involvement of free radical reaction intermediates. The expected one-electron oxidation product of BHA and BHT, the phenoxyl radical, could only be detected with pure 3-t-butyl-4-hydroxyanisole and oxyhemoglobin. With the commercial mixture of 2- and 3-t-butyI-4-hydroxyanisole a very strong ESR signal of a secondary free radical species was observed, similar to the one observed earlier with p-hydroxyanisole and dependent on the presence of free thiol groups, so that we assumed the intermediate existence of a perferryl species, the MetHb-H2O2 adduct. In a second series of experiments we investigated the reactivity of this postulated intermediate with BHA and BHT, starting with a pure MetHb/H2O2-phenol mixture in a stopped-flow apparatus linked to the ESR spectrometer, detecting the expected phenoxyl radicals from BHA and p-hydroxyanisole. Due to the low solubility and decreased reactivity of BHT only traces of the phenoxyl type radical were found together with a high concentration of unreacted perferryl species. The reactivity of BHA, BHT and p-hydroxyanisole with free thiol groups is demonstrated by an increased reaction rate in the presence of the thiol group blocking substance NEM.  相似文献   

18.
The dietary administration of selenium (sodium selenite; 4 p.p.m.) daily has been found to be highly effective in reducing the incidence of cancer induced by N-nitrosodiethylamine (DEN) in Wistar strain rats. Selenium treatment either before initiation, during initiation and selection/phenobarbital promotion phases of hepatocarcinogenesis has been found to be effective in elevating hepatic microsomal cytochrome b(5), NADPH-cytochrome C reductase and cytosolic aryl hydrocarbon hydroxylase activities to a statistically significant level measured either in the hyperplastic nodule or in the surrounding liver tissues compared to control animals. Moreover, selenium treatment throughout the study, decreases the cytosolic glutathione S-transferase and microsomal UDP-glucuronyl transferase activities by a significant degree when compared to control rats. Alterations in glutathione metabolizing enzyme activities (glutathione reductase, gamma-glutamyl transpeptidase, gamma-glutamylcysteine synthetase and glucose-6-phosphate dehydrogenase) were also observed in selenium-treated groups. Our results confirm the fact that selenium is particularly protective in limiting the action of DEN during the initiation phase of hepatocarcinogenesis.  相似文献   

19.
A recent finding in epidemiological and laboratory studies suggests that the ratio of selenium to glutathione is lower in breast cancer subjects than its control counterparts. Selenium, an antioxidant and anticarcinogen, can modify the status of glutathione and some associated enzymes by blocking peroxidation of lipids in membranes of cancer subjects. Studies were conducted using female albino rats of Wistar strain bearing mammary tumor induced by 7,12-dimethylbenz(a) anthracene to assess the biological role of selenium on some antioxidant enzymes associated with the maintenance of glutathione status. For induction of mammary tumor, 25 mg DMBA in a 1 ml emulsion of sunflower oil and physiological saline was injected subcutaneously to each rat. One group in each of control and tumor bearing rats, were fed 5 mg sodium selenite/kg diet from the day of tumor induction for 24 weeks. Increase in the reduced glutathione concentration was preceded by significant increase in the oxidized glutathione as well as in the activities of -glutamylcysteine synthetase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, and glucose-6-phosphate dehydrogenase by selenium administration in rats bearing tumor. However, selenium administration to rats bearing tumor decreased the activity of -glutamyl transpeptidase. These observations clearly demonstrate the influence of dietary selenium supplementation in correcting abnormal changes in glutathione turnover and some associated enzymes in tumor induced rats.  相似文献   

20.
ENZYMES OF THE γ-GLUTAMYL CYCLE IN THE CHOROID PLEXUS AND BRAIN   总被引:4,自引:4,他引:0  
—The presence of enzymes of the γ-glutamyl cycle in the bovine and rabbit brain and choroid plexus is described. The activities of γ-glutamyl transpeptidase, γ-glutamyl cyclotransferase and γ-glutamyl-cysteine synthetase in the choroid plexus were found to be higher than in the brain. The activity of γ-glutamyl transpeptidase in the choroid plexus was many times higher than the activity of the other enzymes. Brain and choroid plexus γ-glutamyl transpeptidase were activated by Na+ and K+. Both brain and choroid plexus showed only a very limited capacity to metabolize [14C]5-oxoproline to 14CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号