首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solubilization of the D-1 dopamine receptor from rat striatum   总被引:1,自引:0,他引:1  
The D-1 dopamine receptor was extracted from rat striatal membranes with 0.7% sodium cholate and 1 M NaCl. Pretreatment of the membranes with a D-1 specific agonist, inclusion of crude phospholipids in the solubilization buffer, and subsequent removal of the detergent led to a maximal extraction of 48% of the receptor binding sites. The D-1 antagonist, [125I]SCH 23982, bound to single class of sites with a Kd of 1.8 nM and a Bmax of 1.65 pmol/mg protein. The solubilized receptors retained the ability to discriminate between active and inactive enantiomers of agonists and antagonists selective for the D-1 receptor.  相似文献   

2.
A new radioiodinated molecule, 125I-SCH 38840 (previously referred to as 125I-SCH 23982), has been recently reported to be a D-1 dopamine receptor ligand. The current study confirms and expands the characterization of both the radiolabeled and unlabeled forms of this compound, as well as describing the development of an in vivo D-1 receptor binding assay utilizing the 125I-SCH 38840. The binding of 125I-SCH 38840 to rat striatal membranes, in vitro, was saturable and exhibited a KD of 1.47 nM. Competition studies using 125I-SCH 38840 exhibited a pharmacological profile consistent with the proposal that 125I-SCH 38840 was binding to the D-1 receptor. Further studies with the unlabeled SCH 38840 demonstrated that it inhibited dopamine-stimulated adenylate cyclase with a KI of 66.1 nM, indicating that SCH 38840 was acting as a D-1 antagonist. Behavioral studies demonstrated that SCH 38840 (MED = 1.0 mg/kg, s.c.) blocked conditioned avoidance responding in rats, a measurement considered predictive of anti-psychotic activity in man. In vivo binding of 125I-SCH 38840 to rat striatum following s.c. administration was specific. Peak striatal levels were observed 1 h after injection, with measurable binding observed out to 8 h post-treatment. The displacement of the in vivo binding by unlabeled standards again suggested a D-1 selective interaction. The half-life of the in vivo binding of 125I-SCH 38840 was approximately 1.25 h, and was nearly equivalent to the half-life of the anti-CAR activity of unlabeled SCH 38840. These results clearly demonstrate the D-1 nature of SCH 38840's behavioral activity and strengthen the anti-psychotic potential of a D-1 antagonist.  相似文献   

3.
Drug competition profiles, effect of raphé lesion, and sodium dependency of the binding of two antidepressant drugs 3H-imipramine and 3H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common “antidepressant receptor.” Of the neurotransmitters tested, only serotonin displaced binding of both 3H-imipramine and 3H-mianserin. 3H-mianserin binding was potently displaced by serotonin S2 antagonists and exhibited a profile similar to that of 3H-spiperone binding. In the presence of the serotonin S2 antagonist spiperone, antihistamines (H1) potently displaced 3H-mianserin binding. 3H-Imipramine binding was displaced potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing 3H-imipramine binding was not similar to their order in displacing 3H-spiperone or 3H-serotonin binding. Prior midbrain raphé lesions greatly decreased the binding of 3H-imipramine but did not alter binding of 3H-mianserin. Binding of 3H-imipramine but not 3H-mianserin was sodium dependent. These results show that 3H-imipramine and 3H-mianserin bind to different receptors. 3H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. 3H-Mianserin binds to postsynaptic receptors, possibly both serotonin S2 and histamine H1 receptors, the binding of which is sodium independent.  相似文献   

4.
Methods for measuring 3H-SCH 23390 binding and dopamine (DA) stimulated adenylate cyclase (AC) were established in identical tissue preparations and under similar experimental conditions. Pharmacological characterization revealed that both assays involved interaction with the D1 receptor or closely associated sites. In order to investigate whether the binding sites for 3H-SCH 23390 and DA in fact are identical, the antagonistic effects of a variety of pharmacologically active compounds were examined. Surprisingly, the Ki-values obtained from Schild-plot analysis of the antagonism of DA-stimulated AC, were 80-240 times higher than the Ki-values obtained from competition curves of 3H-SCH 23390 binding. Since both assays were performed under identical conditions, the differences in Ki-values indicate the possibility of different binding sites for DA and 3H-SCH 23390 or, that DA and 3H-SCH 23390 label different states of the same receptor.  相似文献   

5.
Muscarinic receptor binding was measured in rat forebrain preparations using the muscarinic agonist, [3H]cis methyldioxolane ([3H]CD). The results of equilibrium binding studies using [3H]CD concentrations between 0.5–64 nM showed that [3H]CD binding did not saturate in this concentration range, although the binding isotherm was concave downward. Nonlinear regression analysis of the binding data revealed the presence of two populations of muscarinic receptors having dissociation constants of 1.83 and 123 nM and binding capacities of 85 and 1320 fmol/mg protein, respectively. Competitive inhibition experiments showed that [3H]CD binding was readily displaced by several muscarinic agonists and antagonists. The stereospecificity of [3H]CD binding was demonstrated in competitive inhibition experiments using the stereoisomers of benzetimide and acetyl-β-methylcholine. Dexetimide was 10,000 times more potent than levetimide and l-acetyl-β-methylcholine was 520 times more potent than d-acetyl-β-methylcholine. A variety of nonmuscarinic cholinergic drugs were not effective at inhibiting [3H]CD binding at a concentration of 10 μM.  相似文献   

6.
3H-Clozapine binds specifically and with high affinity (KD = 1.3 nM) to rat brain membranes. About two thirds of reversibly bound 3H-clozapine are displaced by hyoscyamine in a stereospecific manner, suggesting interaction of clozapine with muscarinic cholinergic receptors. Most of the remaining 3H-clozapine binding is stereospecifically inhibited by butaclamol, but this binding component seems not to be related to dopamine receptors.  相似文献   

7.
A class of high affinity DA receptor sites has been identified with [3H] SPIR in the anterior and pisterior lobes of rat pituitary gland. Competitive studies with DA receptor antagonists and agonists clearly demonstrated that [3H] SPIR stereospecifically labels a true dopaminergic receptor in both lobes. The physiological significance of these receptors, although still unclear, may be that of controlling the secretion of pituitary hormones and peptides.  相似文献   

8.
SCH 23390, an apparently selective antagonist of central D1 dopamine receptors, produced profound catalepsy at low doses (0.1 mg/kg, s.c.). Pretreatment with the selective D2 receptor agonists LY 141865, RU 24213 or LY 171555, the active (-) enantiomer of LY 141865, elicited a dose-dependent inhibition of the cataleptic response. Pergolide and apomorphine were also effective. This effect was not due to altered disposition or penetration of SCH 23390 into the brain since pretreatment with a dose of LY 171555 which completely blocked catalepsy had no effect on the ID50 of SCH 23390 to inhibit 3H-cis-piflutixol binding to D1 receptors measured ex vivo. Alternative mechanisms are considered to explain the results, which offer new insights into striatal dopaminergic regulation of motor activity.  相似文献   

9.
The potent and D-1 versus D-2 selective dopamine receptor antagonist, SK&F R-83566, was radiolabelled with tritium and was used as a radioligand for examination of D-1 receptors in rat striatum. Binding of the radioligand was stereoselective, saturable and reversible. In homogenates of rat striatum, nonspecific binding of the radioligand was less than 5% of total binding, the KD was 1.1 +/- 0.2 nM and the Bmax was 1130 +/- 70 fmoles/mg protein. Results of competition binding analyses yielded a pharmacological profile that was characteristic of dopamine D-1 receptor interaction. Competition studies of dopamine agonists against the potent antagonist radioligand indicated multiple affinities of agonist binding to the D-1 receptor. Displacement was best fit to a two-site model of ligand binding and high and low affinities were subject to regulation by guanine, but not adenine, nucleotides. Antagonist binding was not complex and was unaffected by guanine nucleotides. The role of monovalent cations in regulating D-1 receptor binding was evaluated by comparing effects of Na+, Li+, and K+ on binding of the antagonist [3H]SK&F R-83566 and the agonist [3H]fenoldopam (SK&F 82526). Whereas agonist binding was reduced in a concentration dependent fashion by monovalent cations with a ranking of potency Li+ greater than Na+ greater than K+, antagonist binding was enhanced by the cation Na+ but little affected by Li+ or K+. This effect of relatively low concentrations of Na+ to decrease agonist binding and increase antagonist binding suggests similarities between the D-1 receptor which is positively-coupled to adenylate cyclase and other receptors, e.g. alpha 2 adrenergic receptors, which are negatively-coupled to adenylate cyclase.  相似文献   

10.
Specific binding sites for [3H]-1,3 di-ortho-tolylguanidine ([3H]-DTG), a selective radiolabeled sigma receptor ligand, were detected and characterized in sheep pineal gland membranes. The binding of [3H]-DTG to sheep pineal membranes was rapid and reversible with a rate constant for association (K+1) at 25 degrees C of 0.0052 nM-1.min-1 and rate constant for dissociation (K-1) 0.0515 min-1, giving a Kd (K-1/K+1) of 9.9 nM. Saturation studies demonstrated that [3H]-DTG binds to a single class of sites with an affinity constant (Kd) of 27 +/- 3.4 nM, and a total binding capacity (Bmax) of 1.39 +/- 0.03 pmol/mg protein. Competition experiments showed that the relative order of potency of compounds for inhibition of [3H]-DTG binding to sheep pineal membranes was as follows: trifluoperazine = DTG greater than haloperidol greater than pentazocine greater than (+)-3-PPP greater than (+/-)SKF 10,047. Some steroids (testosterone, progesterone, deoxycorticosterone) previously reported to bind to the sigma site in brain membranes were very weak inhibitors of [3H]-DTG binding in the present study. The results indicate that [3H]-DTG binding sites having the characteristics of sigma receptors are present in sheep pineal gland. The physiological importance of these sites in regulating the synthesis of the pineal hormone melatonin awaits further study.  相似文献   

11.
Neuroleptics such as thioxanthenes (cis(Z)-flupentixol and cis(Z)-clopenthixol) and phenothiazines (fluphenazine and perphenazine), which block both dopamine (DA) D-1 and D-2 receptors and the butyrophenones (haloperidol and spiroperidol), which block D-2 receptors only, are equipotent both behaviorally and clinically. A new compound SCH 23390 which selectively blocks DA D-1 receptors, resembles many neuroleptics in its pharmacological profile: antistereotypic effects in mice, rats and dogs, cataleptogenic effect and inhibitory effect on amphetamine circling. In contrast SCH 23390 has no effect on apomorphine-induced vomiting in dogs and little effects on 6-OHDA-denervated supersensitive DA receptors, stimulated by the DA agonist 3-PPP. In a series of experiments where methylphenidate-induced stereotyped gnawing in mice was inhibited by neuroleptics, it was shown that concomitant treatment with scopolamine or diazepam attenuated the effect of butyrophenones (D-2 antagonists). The same treatment attenuated the effect of phenothiazines, to a lesser extent, and hardly attenuated the effect of thioxanthenes and SCH 23390 at all. It is concluded that DA D-1 receptors are as important as D-2 receptors for the expression of neuroleptic activity in most animal models believed to be predictive of antipsychotic and extrapyramidal side-effect potential. However, the D-1 antagonist is less sensitive than D-2 antagonists to antimuscarinic compounds and benzodiapines.  相似文献   

12.
[3H]Yohimbine, a potent α2-adrenergic antagonist, was used to label the α2-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to α2-adrenergic receptors. Binding reached a steady state in 2–3 min at 37°C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10?5 M;t12 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (?) isomer was 11-times more potent than the (+) isomer. Cathecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine > (?)-epinephrine > (?)-norepinephrine >> (?)-isoproterenol. The potent α2-adrenergic antagonist, phentolamine, competed for the sites whereas the β-antagonist, (±)-propanolol, was a very weak inhibitor. 0.1 mM GTP reduced the bindng affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonine competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest tht [3H]yohimbine binding to human platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label α2-adrenergic receptors.  相似文献   

13.
In order to gain a better understanding of the distinctive mechanisms of the various types of antiprogestins, we have characterized in vitro ligand binding, specific DNA binding and phosphorylation of progesterone receptor (PR) from T47D cells after treatment of cells with progestins (progesterone, R5020) and antiprogestins (RU486, ZK98299, Org 31806 and Org 31710). Treatment of the cells with R5020 or PR antagonists, with the exception of ZK98299, resulted in a quantitative upshift of PR-A and PR-B indicative of ligand/DNA-induced phosphorylation of PR. Treatment of cells with RU486, Org 31710 or Org 31806, but not R5020 or ZK98299 resulted in detectable PR-progesterone response element complexes (PR-PREc) as assessed by gel mobility shift assay. Although treatment of cells with ZK98299, a type I PR antagonist, did not induce phosphorylation, the antiprogestins, Org 31806 and Org 31710, in a manner identical to RU486, did. Our data suggest that Org 31806 and Org 31710 affect propertie s of PR from T47D cells that are similar to RU486. (Mol Cell Biochem 175: 205–212, 1997)  相似文献   

14.
To a crude preparation of synaptic membranes prepared from rat brain, stereospecific, saturable, reversible binding was described of D-[3H]glucose. Binding showed a Kd = 0.45 μM and the fractional rate of dissociation was approximately eight times the fractional rate of association. D-[3H]glucose binding was displaced by 2-deoxyglucose and 3-0-methylglucose and it was abolished when membranes were denatured by heating.  相似文献   

15.
Crude membrane fractions were prepared from rat retinae and used to study the specific binding of [3H]muscimol, a potent GABA agonist. Specific [3H]muscimol binding was enhanced 2–3 fold by pretreatment of the membranes with 0.025% Triton X-100. Two muscimol binding sites were demonstrated with KD values of 4.4 and 12.3 nM. GABA, muscimol, and 3-aminopropanesulfonic acid were the most potent inhibitors of specific [3H]muscimol binding with KI values of 15, 10, and 50 nM, respectively. These data are consistent with binding to the synaptic GABA receptor.  相似文献   

16.
Previous studies have demonstrated high affinity 3H-dopamine binding sites on mammalian striatal membranes. These putative dopamine receptors of unknown physiological significance have been termed D-3 sites. Such studies have failed, however, to demonstrate high affinity 3H-dopamine binding to D-2 sites, which can be labeled by 3H-butyrophenones, and which represent the putative dopamine receptors most stronly implicated in the behavioral correlates of dopaminergic CNS activity. We now report that preincubation of membrane homogenates with Mg++ and inclusion of Mg++ (1–10mM) or other divalent metal cations during binding allows high affinity D-2 specific 3H-dopamine binding in rat striatal membranes, and that these ions also increase the Bmax of D-3 specific 3H-dopamine binding. GTP, GDP, and GppNHp can completely abolish all D-2 specific 3H-dopamine binding, while only a magnesium-dependent portion of D-3 sites appears to be GTP sensitive. These data are consistent with the hypothesis that the striatal D-2 receptor exists in two agonist affinity states whose interconversion is effected by guanine nucleotides and divalent metal cations. The GTP sensitive/magnesium dependent nature of 3H-dopamine binding to so-called D-3 sites suggests that some such sites may in fact represent a high agonist-affinity state of the D-1 adenylate cyclase stimulating dopamine receptor also found in this tissue.  相似文献   

17.
《Life sciences》1995,57(15):1401-1410
PD 128907 [4a R, 10 b R-(+)-trans- 3, 4, 4a, 10 b - tetrahydro - 4- n-propy12 H,5H-[1] benzopyrano[4,3-b]1,4-oxazin-9-ol.], a selective dopamine (DA) D3 receptor agonist ligand exhibits about a 1000-fold selectivity for human D3 receptors (Ki, 1 nM) versus human D2 receptors (Ki, 1183 nM) and a 10000-fold selectivity versus human D4 receptors (Ki, 7000 nM) using [3H]spiperone as the radioligand in CHO-K1-cells. Studies with [3H]PD 128907, showed saturable, high affinity binding to human D3 receptors expressed in CHO-K1 cells (CHO-K1-D3) with an equilibrium dissociation constant (Kd) of 0.99 nM and a binding density (Bmax) of 475 fmol/mg protein. Under the same conditions, there was no significant specific binding in CHO-K1-cells expressing human D2 receptors (CHO-K1-D2). The rank order of potency for inhibition of [3H]PD 128907 binding with reference DA agents was consistent with reported values for D3 receptors. These results indicate that [3H]PD 128907 is a new, highly selective D3 receptor ligand with high specific activity, high specific binding and low non-specific binding and therefore should be useful for further characterizing the DA D3 receptors.  相似文献   

18.
The effects of ascorbic acid on dopaminergic 3H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using luM (+)butaclamol) of the 3H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total 3H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable 3H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of “specific binding” was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (±)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable 3H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of 3H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific 3H-agonist binding to dopamine receptors.  相似文献   

19.
In an attempt to characterize the brain histamine H2 receptor, experiments were undertaken to study the binding properties of (N-methyl-3H) -cimetidine, an H2 receptor antagonist, in rat brain membranes. Using a centrifugation assay, 3H-cimetidine binding having a Kd of 0.40μM and a Bmax of 3.9 pmoles/mg protein was detected. Of fourteen anions and cations tested, one, Cu++, dramatically increased specific 3H-cimetidine binding, the increase being due mainly to a change in Bmax. Studies of substrate specificity for 3H-cimetidine binding revealed that Cu++, while not significantly affecting the potency of H2 receptor agonists and antagonists, dramatically decreases the potency of H1 receptor substances on the 3H-cimetidine binding site. In addition, both the relative and absolute potencies of various H2 receptor agonistsv and antagonists in displacing the ligand in the presence of Cu++ parallels their potencies in biological systems. These findings suggest that, under these conditions, 3H-cimetidine may be labelling a biologically relevant H2 binding site in brain and that Cu++ may regulate the substrate specificity for this site. The brain regional distribution and kinetic analysis of the binding suggest that it is not localized solely to the synaptic receptor for histamine, but may also be associated with histamine receptors at other neuronal, glial or vascular sites.  相似文献   

20.
A Sidhu  S Kassis  J Kebabian  P H Fishman 《Biochemistry》1986,25(21):6695-6701
An iodinated compound, [125I]-8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin -7-ol, has been recently reported [Sidhu, A., & Kebabian, J.W. (1985) Eur. J. Pharmacol. 113, 437-440] to be a specific ligand for the D-1 dopamine receptor. Due to its high affinity and specific activity, this ligand was chosen for the biochemical characterization of the D-1 receptor. Alkylation of particulate fractions of rat caudate nucleus by N-ethylmaleimide (NEM) caused an inactivation of the D-1 receptor, as measured by diminished binding of the radioligand to the receptor. The inactivation of the receptor sites by NEM was rapid and irreversible, resulting in a 70% net loss of binding sites. On the basis of Scatchard analysis of binding to NEM-treated tissue, the loss in binding sites was due to a net decrease in the receptor number with a 2-fold decrease in the affinity of the receptor for the radioligand. Receptor occupancy by either a D-1 specific agonist or antagonist protected the ligand binding sites from NEM-mediated inactivation. NEM treatment of the receptor in the absence or presence of protective compound abolished the agonist high-affinity state of the receptor as well as membrane adenylate cyclase activity. The above-treated striatal membranes were fused with HeLa membranes and assayed for dopamine-stimulated adenylate cyclase activity. When the sources of D-1 receptors were from agonist-protected membranes, the receptors retained their ability to functionally couple to the HeLa adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号