首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies were performed to determine whether the cyclic hexapeptide analog of somatostatin, cyclo(N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe) II, could alter circulating levels of neurotensin (NT) and inhibit the release of NT from small intestine following the intraluminal perfusion of lipid and ETOH. The small intestine of anesthetized rats was perfused with 0.9% NaCl, 1mM ETOH, 100 mM ETOH or 1 mM oleic acid with and without the intravenous infusion of the somatostatin analog. Plasma samples collected from the superior mesenteric vein were extracted, chromatographed on HPLC and assayed with both C-terminal and N-terminal antisera to NT. The basal circulating levels of chromatographically and immunochemically identified NT observed during the perfusion of the small intestine with 0.9% NaCl were significantly lower (p less than 0.01) during the IV infusion of the somatostatin analog as compared to animals infused IV with saline. The 2-3 fold increase in plasma levels of NT observed with the intestinal perfusion of oleic acid and ETOH did not occur in animals simultaneously infused IV with the somatostatin analog. The somatostatin analog was also effective in decreasing the basal levels of NT metabolite NT(1-8) as well as inhibiting the increase in this metabolite that accompanies the stimulated release of NT.  相似文献   

2.
The effects of a cyclic hexapeptide analog of somatostatin, [cyclo(Pro-Phe-D-Trp-Lys-Thr-Phe)] (cyclo-SS), administered intravenously (iv) or instilled into the duodenum (id) on the pancreatic response to endogenous (meal and duodenal acidification) and exogenous (secretin, CCK) stimulants were compared in five dogs with esophageal, gastric, and pancreatic fistulae. Cyclo-SS given iv in graded doses against a constant background stimulation with secretin caused a similar and dose-dependent inhibition of pancreatic HCO3 and protein secretion being about twice as potent as somatostatin-14 (SS-14). Cyclo-SS, whether applied topically to the duodenal mucosa in a dose of 1 microgram/kg or given iv at a dose of 0.5 microgram/kg-hr, resulted in a similar inhibition of pancreatic secretion induced by feeding a meat meal, sham-feeding, duodenal acidification, or infusion of secretin or CCK. The inhibition of pancreatic secretion by cyclo-SS was due in part to direct inhibitory action on the exocrine pancreas as well as to the suppression of the release of secretin, insulin, and pancreatic polypeptide. It is concluded that cyclo-SS is a more potent inhibitor of pancreatic secretion than SS-14 and that it is active when administered both parenterally and intraduodenally.  相似文献   

3.
A cyclic hexapeptide analog of somatostatin, cyclo-(Pro-delta z-Phe-D-Trp-Lys-Thr-Phe) (II) has been synthesized by a combination of solid phase and solution methodology. It shows a potency for inhibition of growth hormone release in vitro about one-tenth that of the corresponding saturated analog, cyclo-(Pro-Phe-D-Trp-Lys-Thr-Phe) (I). N.m.r. studies indicate comparable backbone conformations for analogs I and II. However, the sum of our findings from biological evaluation and solution physical data suggest that on the receptor the position-7 phenyl ring of I is adopting a conformation which differs from that of one of the major solution conformers defined previously by n.m.r. studies.  相似文献   

4.
A model for the bioactive conformation of the highly active cyclic hexapeptide somatostatin analog cyclo-(Pro-Phe-D-Trp-Lys-Thr-Phe) has been proposed. As a test of this model, several compounds containing lactam and N-Me amino acid conformational modifications in the Thr-Phe-Pro-Phe beta turn were synthesized. The N-Me alanine and sarcosine substitutions for proline gave highly active analogs, while lactam dipeptides in place of Phe-Pro decreased potency. 1H n.m.r. and CD spectra of these analogs illustrate the conformational effects in solution of these modifications. The results provide additional support for the proposed conformational model.  相似文献   

5.
We report the conformational analysis by 1H‐NMR in DMSO and computer simulations involving distance geometry and molecular dynamics simulations of peptoid analogs of the cyclic hexapeptide c‐[Phe11‐Pro6‐Phe7‐d ‐Trp8‐Lys9‐Thr10] L‐363,301 (the numbering refers to the positions in native somatostatin). The compounds c‐[Phe11‐Nphe6‐Nal7‐d ‐Trp8‐Lys9‐Thr10] ( Nphe 6 ‐ Nal 7 analog 1 ), c‐[Nal11‐Nphe6‐Phe7‐d ‐Trp8‐Lys9‐Thr10] ( Nal 11 ‐ Nphe 6 analog 2 ) and c‐[Phe11‐Nnal6‐Phe7‐d ‐Trp8‐Lys9‐Thr10] ( Nnal 6 analog 3 ), where Nphe denotes N‐benzylglycine and Nnal denotes N‐(1‐naphthylmethyl)glycine, are subjected to SAR studies in order to investigate the influence of the bulky naphthyl aromatic ring on the conformation. The Nal 11 ‐ Nphe 6 and Nphe 6 ‐Nal 7 analogs exhibit potent binding to the hsst2, hsst3 and hsst5 receptors, whereas the Nnal 6 analog has decreased binding affinity to all receptors but is more selective towards the hsst2 than the other two analogs and L‐363,301. The conformational search employing distance geometry, energy minimization and molecular dynamic simulations gives insight into the conformational flexibility of these analogs. The molecules adopt both cis and trans orientations of the peptide bond between residues 11 and 6. The cis isomers of these analogs adopt type II′ β‐turns with d ‐Trp in the i+1 position and type VIa β‐turns with the cis peptide bond between residues 6 and 11. The results of free and distance restrained molecular dynamics simulations at 300 K indicate that the Nphe 6 ‐Nal 7 and Nal 11 ‐Nphe 6 compounds adopt a preferred backbone conformation which can be described as ‘folded’ about residues 7 and 10. The Nnal 6 analog, which binds less effectively to the hsst receptors, has a more flexible backbone structure than the Nal 11 ‐Nphe 6 and Nphe 6 ‐Nal 7 analogs and prefers a ‘flat’ structure with regard to the orientations about Phe7 and Thr10 during molecular dynamics simulations. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
A cyclic pseudohexapeptide analog of somatostatin, cyclo(Pro psi[ CH2S ]Phe-D-Trp-Lys-Thr-Phe) was synthesized by solid phase methods and diphenylphosphoryl azide ring closure. The resulting crystalline compound possessed 23% of the growth hormone inhibitory activity of the parent tetradecapeptide and approximately 6% of the activity of the all-amide cyclic hexapeptide analog in spite of the absence of one of two postulated intramolecular hydrogen bonds.  相似文献   

7.
8.
The active sequence Phe7-D-Trp8-Lys9-Thr10 of somatostatin has been cyclized through o-(aminomethyl)phenylacetic acid, a spacer molecule, designed to mimic a Gly-Gly dipeptide containing a cis-constrained peptide bond. The resulting analogue shows no GH-inhibition. A 2D n.m.r. study reveals conformations different from the proposed bio-active one and still sensitive to the medium (solvent).  相似文献   

9.
N-methyl- alpha -benzyl-o-aminomethylphenylacetic acid was incorporated into a cyclic somatostatin analogue in order to mimic a cis-peptide bond configuration. The high biological potency of one of the isomers of the cyclic peptide strongly argues in favour of the proposed cis-configuration of the peptide bond at that position in the parent peptide. This represents the first cis-peptide bond mimic which has high biological activity.  相似文献   

10.
The synthesis, binding affinity, and structure-activity relationships of compounds related to the cyclic hexapeptide, c[Pro6-Phe7-D-Trp8-Lys9-Thr10-Phe11], L-363,301 (the numbering in the sequence refers to the position of the residue in native somatostatin) is reported. The Pro residue in this compound is replaced with the peptoid residues Nasp [N-(2-carboxyethyl) glycine], Ndab [N-(2-aminoethyl) glycine] and Nlys [N-(4-aminobutyl) glycine]. This series of compounds enables us to draw conclusions about the influence of positively or negatively charged residues in the bridging region on the binding affinity towards the isolated human somatostatin receptors. A loss of binding to the recombinant human somatostatin (hsst) receptors in the Nasp analog compared with L-363,301 and compared with the Ndab and Nlys analogs clearly demonstrates that the presence of an acidic residue in the bridging region is unfavorable for binding to the hsst receptors. Comparison between the Ndab analog and the Nlys analog suggests that the presence of a basic residue in the bridging region might be advantageous for binding to the hsst5 receptor provided that the residue bearing the basic group extends far enough to allow for interaction with the receptor, while the length of the basic peptoid residue does not influence binding to the hsst2 receptor. These results are useful for the design of hsst5 selective somatostatin analogs.  相似文献   

11.
Potent, cyclic hexapeptide analogues of somatostatin are generally believed to adopt some common secondary structural features: a II′ β turn at one end of the cycle, and a type VI turn with a cis amide bond at the other. A proposed cis amide surrogate, the 1,5-disubstituted tetrazole, has been placed into a cyclic hexapeptide analog of somatostatin in order to constrain the putative cis amide bond. The final cyclization was done by either chemical or enzymatic means. The product, cyclo(Ala6-Tyr7-D -Trp8-Lys9-Val10-Phe11-Ψ[CN4]), was found to have 83% of the activity of somatostatin. Solution nmr analysis in DMSO/water revealed that the backbone as well as side chain χ1 and χ2 were well ordered. Relaxation matrix methods were used to extract distance restraints from the nuclear Overhauser effect spectroscopy data set, and these were used in a systematic search of torsional space to identify structures consistent with the nmr data. Restrained minimizations of these structures using a number of different force fields produced structures having the expected βII′ turn at D -Trp8-Lys9 and αβVIa turn in the Phe11-Ψ[CN4]-Ala6 portion of the molecule. The similarity of the minimized structures to those previously reported for cyclic hexapeptide analogues of somatostatin confirms the similarity of the tetrazole geometry to that of the cis amide in solution. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
A nonreducible cyclic analog of somatostatin (SRIF) was prepared by a combination of solid phase and solution peptide synthesis. The compound, gamma-Abu-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Asp-OH, was tested for its effect on the release of growth hormone, glucagon and insulin in rats. It significantly suppressed pentobarbital-stimulated growth hormone release but showed no effect on arginine-stimulated glucagon or insulin release. The linear form, NH2-gamma-Abu-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Asp-OH, was also prepared and tested in vivo. It was shown to have only slight activity.  相似文献   

13.
L-363,586 is a cyclic, hexapeptide analogue of somatostatin-14 with potent inhibitory actions on rat growth hormone (GH) release in vitro. The studies reported here investigate the direct effects of L-363,586 on basal and growth hormone-releasing factor (GRF)-stimulated GH secretion from 3 human somatotrophinomas in dispersed cell culture. 1nM and 10nM L-363,586 inhibited both basal and GRF-stimulated GH release from cells of all 3 somatotrophinomas during a 2h treatment period, whilst 100nM L-363,586 had a prolonged inhibitory action on basal GH secretion from cells of 2 of the tumours throughout treatment and recovery periods. Rebound release of GH was observed with cells of 1 tumour following treatment with L-363,586 plus GRF. The actions of L-363,586 were similar to those of somatostatin-14. These data suggest that L-363,586 may have a role in the treatment of acromegaly.  相似文献   

14.
The results of a conformational study on the C terminal hexapeptide of Somatostatin are presented. Semi-empirical energy calculations and high resolution NMR methods have been used to obtain information on the conformational properties of SRIF9-14 in [2H6]dimethylsulfoxide and 2H2O. It is concluded from the energy calculations that the peptide has an averaged conformation in which semi extended and folded structures are important. Only some of the folded conformations can explain the chemical shift differences between the amino acid residues Thr10 and Thr12 as a ring current shift by the Phe11 aromatic ring on Thr10. The nonequivalence is more pronounced in dimethyl-sulfoxide (0.23--0.15 ppm) where it decreases with increasing temperature towards the temperature independent value in 2H2O (0.03 ppm). This suggests that the folded conformations are somewhat predominant in dimethylsulfoxide solutions. In 2H2O the semi extended and folded structures are statistically equally important and the peptide is more flexible. A comparison with a study on the smaller fragments SRIF10-12 and SRIF10-13 which have similar conformational properties, demonstrates the usefulness of the fragment approach in conformational studies of peptides.  相似文献   

15.
A biologically active analog of beta-casomorphin, H-Tyr-cyclo[D-OrnPheProGly], was studied by theoretical conformational analysis. Random sampling was used to search the conformational space of allowed dihedral angles. Among 53 low-energy conformers with different folding of the peptide cyclic moiety, only those were selected which correspond to the low-energy area of the model linear tripeptide Ac-D-AlaAlaPro-NHMe. This peptide was used as the main chain "template" for the D-OrnPheProGly fragment of the studied cyclopeptide molecule. Only 15 conformers were chosen as potentially biologically active structures. The conformational possibilities of the Phe residue were constrained to the combined (A + G) region of the Ala residue phi,psi-map for linear peptides.  相似文献   

16.
17.
18.
We have synthesized two photoreactive derivatives of somatostatin, namely [125I-Tyr11,azidonitrobenzoyl (ANB)-Lys4]somatostatin and [125I-Tyr11,ANB-Lys9]somatostatin, and used them to characterize somatostatin receptors biochemically in several cell types. Saturation binding experiments carried out in the dark demonstrated that [125I-Tyr11,ANB-Lys4]somatostatin bound with high affinity (KD = 126 +/- 39 pM) to a single class of binding sites in GH4C1 pituitary cell membranes. The affinity of this analog was similar to that of the unsubstituted peptide [125I-Tyr11]somatostatin (207 +/- 3 pM). In contrast, specific binding was not observed with [125I-Tyr11,ANB-Lys9]somatostatin. The binding of both [125I-Tyr11,ANB-Lys4]somatostatin and [125I-Tyr11]somatostatin was potently inhibited by somatostatin (EC50 = 300 pM) whereas at 100 nM unrelated peptides had no effect. Furthermore, both pertussis toxin treatment and guanyl-5'yl imidophosphate (Gpp(NH)p) markedly reduced [125I-Tyr11,ANB-Lys4]somatostatin binding. Thus, [125I-Tyr11,ANB-Lys4]somatostatin binds to G-protein coupled somatostatin receptors with high affinity. To characterize these receptors biochemically, GH4C1 cell membranes were irradiated with ultraviolet light following the binding incubation, and the labeled proteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. A major band of 85 kDa was specifically labeled with [125I-Tyr11,ANB-Lys4]somatostatin but not with [125I-Tyr11,ANB-Lys9]somatostatin or [125I-Tyr11]somatostatin. The binding affinity of the 85-kDa protein for [125I-Tyr11,ANB-Lys4]somatostatin was very high (Kd = 34 pM). Labeling of this protein was inhibited competitively by somatostatin (EC50 = 140 +/- 80 pM) but not by unrelated peptides. Furthermore, this band was not labeled in pertussis toxin-treated membranes or in untreated membranes incubated with Gpp(NH)p. Finally, [125I-Tyr11,ANB-Lys4]somatostatin specifically labeled bands of 82, 75, and 72 kDa in membranes prepared from mouse pituitary AtT-20 cells, rat pancreatic acinar AR4-2J cells, and HIT hamster islet cells, respectively. Thus, [125I-Tyr11,ANB-Lys4]somatostatin represents the first photolabile somatostatin analog able to bind to receptors with high affinity. Our studies demonstrate that this novel peptide covalently labels specific somatostatin receptors in a variety of target cell types.  相似文献   

19.
The cyclic peptide SMS 201-995 (+)D-Phe1-Cys2-Phe3-D-Trp4-(+)Lys5-Thr6-++ +Cys7-Thr(ol)8 is an analog of somatostatin and binds to lipid membranes by an electrostatic/hydrophobic mechanism. The structural changes accompanying the binding process were investigated with circular dichroism (CD), fluorescence spectroscopy, and phosphorus and deuterium nuclear magnetic resonance. The peptide penetrates into the lipid bilayer and the binding is accompanied by a small change in the CD spectrum suggesting the formation of beta-ordered structures. The fluorescence emission spectrum of the tryptophan side chain exhibits a blue shift and an intensity enhancement of the emission maximum, providing evidence that this residue is located in the inner part of the phospholipid headgroup region with a dielectric constant of epsilon approximately 7. The peptide diffuses rapidly in the plane of the membrane, changing the lipid headgroup conformation. This was demonstrated by selectively deuterating the two choline segments and measuring the deuterium spectra as a function of the bound peptide concentrations. A linear variation of the quadrupole splitting with the mol fraction of bound peptide was observed. The molecular origin of this effect is a distinct change in the orientation of the phosphocholine dipole, moving the N+ end of the dipole away from the membrane surface into the water phase. This type of headgroup rotation appears to be the general response of the zwitterionic phosphocholine headgroup to cationic surface charges. However, peptides appear to be the most efficient modulators of the lipid headgroup structure known to date.  相似文献   

20.
S C Sumner  J A Ferretti 《FEBS letters》1989,253(1-2):117-120
A receptor selective linear hexapeptide tachykinin analog, senktide, is shown to be highly ordered in solution. The conformational restriction is attributed to steric and electrostatic interactions produced by N-methylation of the third amino acid residue in the sequence and the negatively charged N-terminus. The structure of senktide is described as a dynamic mixture of similar conformations where the predominant one is a distorted antiparallel hydrogen bonded beta-pleated sheet. The observed senktide-receptor specificity is suggested to result from a selection of this or a closely related conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号