首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
The effects of the beta-carbolines, harman and harmine, on naloxone-precipitated withdrawal syndrome in morphine-dependent rats were investigated. Two morphine pellets containing 75 mg morphine base were implanted subcutaneously in the scapular area of adult male Wistar rats (200-250 g) under light ether anesthesia. Rats were then assigned to several groups (n = 12 for each group). Seventy-two hours after morphine implantation, harman (5 and 10 mg/kg), harmine (5 and 10 mg/kg) or saline was injected to rats intraperitoneally (ip). After 45 min, a morphine withdrawal syndrome was precipitated by naloxone (2 mg/kg, ip), and morphine withdrawal signs were observed and evaluated for 15 min. Harmine (5 and 10 mg/kg) attenuated significantly the intensity of all signs of morphine withdrawal except for jumping. While jumping behaviour appearing in morphine withdrawal was intensified by harman (5 and 10 mg/kg) treatment, harmine administration did not produce any significant change in the intensity of this sign. Harman attenuated significantly the intensity of wet dog shakes, writhing, defecation, tremor and ptosis. However, it produced no significant changes in the intensity of teeth chattering and diarrhea. Our results suggest that harman and harmine, beta-carbolines, have some beneficial effects on naloxone-precipitated morphine withdrawal syndrome in rats. Findings from the present study also indicated that harmine was more effective than harman on morphine abstinence syndrome.  相似文献   

2.
The influence of orphanin FQ/nociceptin (OFQ/N) on the morphine-withdrawal symptom was investigated. Withdrawal syndrome was induced in the morphine-dependent rats by an intraperitoneal (i.p.) injection of 2 mg/kg naloxone hydrochloride--an opioid receptors antagonist. Wet-dog shakes were used as a measure of the abstinence syndrome. Intraventricular injections of OFQ/N (5-20 microg/animal) caused significant inhibition of the withdrawal signs at doses between 15-20 microg, in the morphine-dependent rats. OFQ/N alone did not change behavior of the morphine-dependent animals. The obtained results indicate that OFQ/N can inhibit the morphine withdrawal symptoms induced by naloxone.  相似文献   

3.
Intracerebral administration of cyclo (His-Pro), the postulated metabolite of thyroliberin (TRH, pGlu-His-Pro-NH2) inhibited the naloxone induced withdrawal responses in morphine dependent mice. Mice were rendered dependent on morphine by the subcutaneous implantation of a pellet (containing 75 mg of morphine free base) for three days. Six hours after pellet removal, the naloxone ED50 for the jumping response was found to be higher in mice injected with cyclo (His-Pro) compared with that of vehicle controls. Similarly, the hypothermic response observed following 50 μg/kg of naloxone given given 6 h after pellet removal or that seen with 100 μg/kg of naloxone given 24 h after pellet removal from morphine-dependent mice was inhibited by cyclo (His-Pro). Previously, we have shown similar results with TRH on the morphine abstinence syndrome. It appears, therefore, that cyclo (His-Pro) may be the active metabolite of TRH and analogs of cyclo (His-Pro) may be useful in blocking the symptoms of the opiate abstinence syndrome.  相似文献   

4.
Thyrotopin releasing hormone (TRH) produces “wet dog shakes” in rats similar to those observed during morphine withdrawal. The shaking behavior precipitated by morphine abstinence can be exacerbated by TRH administration while the other components of the morphine withdrawal syndrome remain unchanged. Morphine, chlorpromazine, apomorphine, and Δ9-tetrahydrocannabinol effectively block shakes induced by either TRH administration or morphine withdrawal. These results suggest the possibility that endogenous TRH may be associated with the “wet dog shakes” observed as a portion of morphine's abstinence syndrome in rats. However, TRH is unable to alter the stereospecific binding of morphine invivo or invitro, and naloxone fails to potentiate the number of TRH-induced shakes. TRH has no antinociceptive properties, and it cannot alter those of morphine. These data suggest that more than one neuromechanism may be responsible for shaking behavior in rats.  相似文献   

5.
G A Higgins  P Nguyen  E M Sellers 《Life sciences》1992,50(21):PL167-PL172
The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine has recently been reported to antagonize certain overt withdrawal signs in morphine dependent rats. The purpose of the present study was to reassess this response and examine the effect of this drug in a model presumably reflective of the motivational impact of withdrawal using the place conditioning technique. Rats were made opiate dependent by the subcutaneous implantation of a 75 mg morphine pellet. Three-4 days later withdrawal was precipitated by naloxone 0.5 mg/kg. Dizocilpine (0.1-0.5 mg/kg) attenuated many of the subsequent behaviours elicited by naloxone, notably diarrhoea, mouth movements, paw shakes and ptosis. In a separate group of morphine dependent rats, naloxone (0.05 mg/kg) precipitated withdrawal produced a clear place aversion. This place aversion was blocked by dizocilpine (0.02-0.1 mg/kg) pre-treatment prior to conditioning. Therefore dizocilpine may modify both motivational and somatic aspects of opioid withdrawal.  相似文献   

6.
In conscious spontaneously hypertensive rats prepared with permanent indwelling aortic catheters the continuous infusion of clonidine (500 μg/kg/day) via an ALZET miniosmopump induced significant reductions in blood pressure and heart rate. These effects were well sustained during 12 days of treatment. A marked overshoot in heart rate was observed following withdrawal of clonidine administration. The tachycardia persisted for more than 36 hours. Mean arterial pressure exceeded control level slightly in the immediate withdrawal period only, whereas significant blood pressure lability was observed for more than 36 hours. These withdrawal symptoms were accompanied by an elevation of plasma noradrenaline concentration. The present study shows the consistent antihypertensive and bradycardic activities of clonidine during 12 days of infusion in spontaneously hypertensive rats. Furthermore, this model may provide a useful tool in the study of withdrawal phenomena of antihypertensive drugs.  相似文献   

7.
Javier Garz  n  Pilar S  nchez-Bl  zquez 《Life sciences》1992,50(26):2099-2109
The potential effect of intracerebroventricular (icv) N-acetyl human β-endorphin-(1–31) on morphine dependence was examined in mice and rats. Animals were rendered tolerant-dependent by subcutaneous (sc) implantation of an oily suspension (10 ml/Kg mouse and 3 ml/Kg rat) containing 0.1 g/ml of morphine. After 72 h of chronic morphine, 1 mg/Kg sc naloxone precipitated in both species a withdrawal syndrome that was moderate in animals pretreated with the acetylated derivative of β-endorphin. Doses of 28 fmols/rat or 80 fmols/mouse N-acetyl human β-endorphin-(1–31) reduced the number of animals presenting the jumping behaviour, as well as the number of jumps recorded. Moreover, less than half of the rats presented the other withdrawal signs evaluated: squeak on touch, diarrhoea, chattering, chewing, ptosis and body shakes. This activity could be observed when N-acetyl human β-endorphin was injected 1 h to 24 h before naloxone; longer intervals resulted in a significant loss of this activity. The 2 agonist clonidine given icv at pmol-nmol doses decreased the incidence of morphine withdrawal syndrome. Combinations of these two substances generally did not produce any further enhancement of the effects of clonidine and N-acetyl β-endorphin when used alone. Icv injections of the antagonist of 2-adrenoceptors yohimbine prevented both clonidine and N-acetyl β-endorphin-(1–31) from reducing the jumping behaviour displayed by morphine-abstinent mice. It is suggested that N-acetyl β-endorphin produces this alleviation of the morphine withdrawal syndrome by improving the efficiency of 2-mediated agonist effects after acting on a neural substrate that is distinct from the μ opioid receptor binding site.  相似文献   

8.
Although the morphine withdrawal syndrome has been well described in the rat, a syndrome having similar characteristics has not been demonstrated following chronic methadone treatment. In this study we describe the behavioral effects produced by naloxone (4 mg/kg sc) following 72 hours of continuous iv infusion of methadone, (12.2 ug/kg/min), morphine (12.2 to 97.9 ug/kg/min) or saline. The cessation of methadone or morphine but not saline treatment followed by naloxone resulted in graded signs including wet dog shakes, escape attempts, self-stimulation and body weight loss and quantal signs including diarrhea, ear blanching, exophthalmos, ptosis, tachypnea and teeth chattering. These results indicate that this mode of methadone administration produces physical dependence characterized by a morphine-like withdrawal syndrome in the rat.  相似文献   

9.
10.
Previous work has shown that clonidine effectively supresses many of the signs of opiate withdrawal. The present study was designed to test the hypothesis that the supression of opiate withdrawal by clonidine is mediated by forebrain noradrenergic projections of the locus coeruleus. Two groups of 24 rats each were subjected to either a 6-hydroxydopamine lesion of the dorsal noradrenergic bundle (Lesion group) or a sham, vehicle injection (Sham group). All rats were made dependent on morphine by subcutaneous implantation of one 75 mg silastic morphine pellet for three days followed by 3 more days with two additional 75 mg pellets. Following removal of the morphine pellet, withdrawal was precipitated in all rats by subcutaneous injection of 4 mg/kg of naloxone. Pretreatment 10 min. before withdrawal with clonidine (0.1 or 0.2 mg/kg) produced a significant attenuation of withdrawal signs as compared to saline injected rats; this effect was equally significant in both sham and lesion groups. Lesions of the locus coeruleus had no effect on withdrawal, nor did they affect the ameliorating action of clonidine. These results substantiate the observation that clonidine can effectively attenuate signs of opiate withdrawal in the rat, but fail to support the hypothesis that these effects are mediated by the forebrain projections of the locus coeruleus.  相似文献   

11.
Objective: The goal was to determine whether withdrawal from sugar can cause signs of opioid dependence. Because palatable food stimulates neural systems that are implicated in drug addiction, it was hypothesized that intermittent, excessive sugar intake might create dependency, as indicated by withdrawal signs. Research Methods and Procedures: Male rats were food‐deprived for 12 hours daily, including 4 hours in the early dark, and then offered highly palatable 25% glucose in addition to chow for the next 12 hours. Withdrawal was induced by naloxone or food deprivation. Withdrawal signs were measured by observation, ultrasonic recordings, elevated plus maze tests, and in vivo microdialysis. Results: Naloxone (20 mg/kg intraperitoneally) caused somatic signs, such as teeth chattering, forepaw tremor, and head shakes. Food deprivation for 24 hours caused spontaneous withdrawal signs, such as teeth chattering. Naloxone (3 mg/kg subcutaneously) caused reduced time on the exposed arm of an elevated plus maze, where again significant teeth chattering was recorded. The plus maze anxiety effect was replicated with four control groups for comparison. Accumbens microdialysis revealed that naloxone (10 and 20 mg/kg intraperitoneally) decreased extracellular dopamine (DA), while dose‐dependently increasing acetylcholine (ACh). The naloxone‐induced DA/ACh imbalance was replicated with 10% sucrose and 3 mg/kg naloxone subcutaneously. Discussion: Repeated, excessive intake of sugar created a state in which an opioid antagonist caused behavioral and neurochemical signs of opioid withdrawal. The indices of anxiety and DA/ACh imbalance were qualitatively similar to withdrawal from morphine or nicotine, suggesting that the rats had become sugar‐dependent.  相似文献   

12.
D L Francis  A C Roy  H O Collier 《Life sciences》1975,16(12):1901-1906
Naive or morphine-dependent rats received a single subcutaneous injection of a phosphodiesterase inhibitor; their behavioral responses were then recorded after a small subcutaneous dose of naloxone. In naive rats, the potent phosphidiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) produced acutely a state in which a small dose of naloxone (0.03 to 1.0 mg/kg subcutaneously) precipitated a quasi-morphine abstinence syndrome that was difficult to distinguish from the true abstinence syndrome, precipitated by the same dose of naloxone in rats made dependent on morphine. IBMX also intensified the true morphine abstinence syndrome. The potency with which IBMX, theophylline, caffeine and RO 20–1724 exerted these effects corresponded with their potency as inhibitors of cyclic-3′, 5′-AMP phosphodiesterase in rat brain homogenate. These and previous findings indicate that: (i) morphine-abstinence effects express increased activity of a central cyclic AMP mechanism; and (ii) naloxone can potently stimulate behavior in animals not treated with any opiate drug.  相似文献   

13.
14.
The effects of different alpha-2 agonists on the spontaneous motility in naive and morphine tolerant mice were studied. Clonidine caused a reduction at the lower (1-3 micrograms Kg-1 i.p.) and higher (100 micrograms Kg-1 i.p.) doses and no effect at 10-30 micrograms Kg-1 i.p. in naive mice, while an increase was found at the intermediate doses (10-30 micrograms Kg-1 i.p.) in morphine tolerant mice. The clonidine-induced inhibition on spontaneous motility at the lower and higher doses was prevented both in naive and tolerant mice by idazoxan pretreatment. In morphine-treated animals the increase induced by clonidine was antagonized by prazosin. The action of guanabenz and guanfacine on locomotion differed from clonidine, by producing inhibition only at higher doses (100-300 micrograms Kg-1 i.p.). Clonidine, but not guanfacine or guanabenz, prevented the withdrawal syndrome precipitated by naloxone. Thus the only alpha-2 agonistic properties do not appear sufficient to explain the prevention of morphine abstinence by clonidine in mice, which can represent a single model to screen anti-withdrawal drugs.  相似文献   

15.
《Life sciences》1994,55(2):PL25-PL31
Extracellular fluid (ECF) levels of glutamate (Glu) and aspartate (Asp) were measured in the locus coeruleus (LC) during morphine withdrawal by using microdialysis in conscious morphine-dependent Sprague-Dawley rats. Guide cannulae were implanted chronically and rats were given intracerebroventricular (i.c.v.) infussions of morphine (26 nmol/1 μl/ht) of saline (1 μl/hr) for 3 days. Microdialysis probes (2 mm tip) were inserted into the LC 24 hr before precipitation of withdrawal by i.c.v. injection of naloxone (12 or 48 nmol/5 μl). Behavioral evidence of withdrawal (teeth-chattering, wet-dog shakes, etc.) was detected following naloxone challenge in morphine, but not in saline-infused rats. Increases (P<0.01) in ECF levels of Glu (and Asp, to a lesser degree) were noted after naloxone-precipitated withdrawal only in the morphine group. The ECF Glu levels in the LC increased from 9.6 ± 2.7 to 15.5 ± 5.0 μM following 12 nmol/5 μl naloxone, and from 9.5 ± 1.9 to 20.5 ± 3.3 μM following 48 nmol/5 μl naloxone, before and in the first 15 min sample after the precipitation of withdrawal in the morphine-dependent rats, respectively. These results provide direct evidence to support the role of excitatory amino acids within the LC in morphine withdrawal.  相似文献   

16.
目的:探讨脊髓水平诱导型一氧化氮合酶在吗啡依赖大鼠戒断反应中的作用。方法:健康雄性SD大鼠72只,体重200~250 g,吗啡剂量每次10 mg/kg,每日2次,隔日每次增加10 mg/kg,至第6天末次注射50 mg/kg,大鼠腹腔注射纳洛酮4 mg/kg建立吗啡依赖及戒断模型,在纳洛酮激发戒断前30 min鞘内注射iNOS特异性抑制剂氨基胍(AG)150μg。分为正常对照组、吗啡依赖组、吗啡戒断组、AG组。采用行为学(n=8)、免疫组织化学(n=6)和Western blot(n=4)方法观察鞘内应用iNOS特异性抑制剂氨基胍对吗啡依赖大鼠纳洛酮催促戒断反应和脊髓神经元iNOS表达的影响。结果:AG组戒断症状评分和戒断组促诱发痛评分均低于戒断组(P<0.05)。免疫组织化学和Western blot显示戒断组大鼠脊髓iNOS阳性神经元的数目和蛋白的表达增高,而AG组大鼠脊髓iNOS阳性神经元的数目和iNOS蛋白的表达低于戒断组(P<0.05)。结论:脊髓水平iNOS表达上调可能参与介导吗啡戒断反应。  相似文献   

17.
It has been recognized for many years that central cholinergic neurons are susceptible to inhibition by opiates and that during withdrawal their firing rates are enhanced. Nevertheless, classical nonselective muscarinic receptor antagonists have not been demonstrated to provide consistent inhibition of withdrawal symptoms in humans or in animal models. The purpose of this study was to determine whether selective blockade of central M1 or M2 muscarinic receptor subtypes could provide inhibition of naloxone precipitated withdrawal symptoms in morphine dependent rats. As with earlier human studies, both cardiovascular and behavioral measures of withdrawal were quantitated. The selective M2 receptor antagonist 4-DAMP was significantly more effective than the M1 antagonist pirenzepine in reducing both cardiovascular and behavioral symptoms. These results are consistent with a role for cholinergic neurons in the expression of certain morphine withdrawal symptoms and suggest that future therapies might be targeted towards central M2 receptors.  相似文献   

18.
眼镜蛇毒细胞毒素CTXn的致死毒性及药物依赖性研究   总被引:1,自引:1,他引:0  
崔超伟  李春霞  董伟华  孔天翰 《蛇志》2010,22(2):85-88,96
目的研究眼镜蛇毒细胞毒素CTXn的致死毒性和药物依赖性,评价其安全性。方法检测CTXn的LD50和对肝细胞色素P450含量的影响,采用大鼠催促戒断模型、自然戒断模型及大鼠条件性位置偏爱模型检测CTXn的药物依赖性。结果 CTXn的LD50为19.61 mg/kg,长期给药对肝细胞色素P450含量无影响。在催促戒断试验中,大鼠连续腹腔注射不同剂量CTXn(0.5、1.0、2.0 mg/kg)10天后经纳洛酮催促,未出现戒断症状及体重下降现象;在大鼠自然戒断试验中,CTXn连续给药21天,停药后大鼠没有出现戒断反应及体重下降现象;在大鼠条件性位置偏爱试验中,CTXn不同剂量组分别连续用药15天后,大鼠在伴药盒的逗留时间均无明显延长,不形成条件性位置偏爱。结论 CTXn毒性较小,长期给药对肝脏药物代谢功能无影响。且不具有身体依赖性及精神依赖性,有潜在的药物开发价值。  相似文献   

19.
F C Tortella  A Cowan  M W Adler 《Life sciences》1981,29(10):1039-1045
The effect of acute icv administration of β-endorphin (5–160 μg), D-ala2-D-leu5-enkephalin (DADL; 5–160 μg), D-ala2-met-enkephalinamide (DAME; 10–160 μg), and etorphine (0.05–1.6 μg) on brain excitability was studied by measuring flurothyl seizure thresholds in rats. Each test compound produced a behavioral stupor characterized by muscle rigidity, exophthalmos, and the absence of spontaneous movement. Wet-dog shakes occured only after injection of the opioid peptides. All four compounds produced a dose-related increase in seizure threshold. Naloxone antagonized the behavioral and anticonvulsant effects; the increase in seizure threshold induced by β-endorphin was the most resistant to naloxone. These results indicate that the opioid peptides, in addition to their known EEG epileptogenic potential, are also anticonvulsant in the rat, thus raising the possibility of a dual action for the opioid peptides on central nervous system excitability.  相似文献   

20.
T Suzuki  Y Hayashi  M Misawa 《Life sciences》1992,50(12):849-856
It is known that the CXBK inbred strain of mouse is deficient in mu1 opioid receptors, whereas the strain has a delta opioid receptor population that is less consistently altered. In the present study, we compared physical dependence on morphine between CXBK and C57BL/6 mice. Both strains of mice were treated with morphine-admixed food for 5 days. During the treatment, the two strains of mice showed no signs of toxicity. There was no significant difference in morphine intake during the treatment between CXBK and C57BL/6 mice. After the treatment, the withdrawal was precipitated by injecting naloxone (0.01-30 mg/kg, s.c.). CXBK mice showed weight loss, diarrhea and ptosis, but not jumping and body shakes after low dose of naloxone. Whereas, C57BL/6 mice showed weight loss, diarrhea, ptosis, body shakes and jumping. These results suggest that naloxone-precipitated weight loss, diarrhea and ptosis may be mediated by mu2 and/or delta opioid receptor, while naloxone-precipitated jumping and body shakes may be mediated by mu1 opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号