首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behavioral Hypersensitivity (BH) to dopamine agonists occurs following chronic treatment with most neuroleptics including haloperidol. In the present study we observed that the concurrent administration of thioridazine and haloperidol prevented the development of BH. In contrast, another neuroleptic, fluphenazine, coadministered with haloperidol, potentiated the degree of BH relative to animals treated with haloperidol only. In rats already made hypersensitive by chronic treatment with haloperidol, a 4 week subsequent treatment with normal saline, thioridazine alone of thioridazine in combination with haloperidol, produced normal behavioral responsiveness. These results suggest that thioridazine prevents the development of BH and can reverse the expression of haloperidol-induced BH.  相似文献   

2.
The abilities of sulpiride, metoclopramide, clozapine, loxapine, chlorpromazine, thioridazine, fluphenazine, haloperidol, (+)-butaclamol and RMI 81,582 to displace 3H-spiroperidol from rat pituitary and striatal membranes in vitro were compared to their abilities to stimulate rat prolactin secretion in vivo. There was a significant correlation between the abilities of clozapine, chlorpromazine, thioridazine, fluphenazine, RMI 81,582, haloperidol and (+)-butaclamol to bind to pituitary and striatal spiroperidol binding sites and to stimulate rat prolactin secretion. Loxapine was somewhat more potent and sulpiride and metoclopramide were markedly more potent in their abilities to stimulate prolactin secretion than would be predicted on the basis of their abilities to bind to pituitary dopamine receptors as measured by antagonism of 3H-spiroperidol binding. The abilities of metoclopramide and sulpiride to increase prolactin secretion and to produce anti-psychotic and extrapyramidal effects may be mediated by action at dopamine receptors which differ from those at which classical neuroleptics act, and they may also be mediated by non-dopaminergic mechanisms. Potency as inhibitors of 3H-neuroleptic binding in the rat pituitary or striatum appears to have heretofore unappreciated limitations to predict physiological functions such as prolactin stimulation and anti-psychotic activity.  相似文献   

3.
[3H]Fluphenazine was used to label both D-1 and D-2 dopamine receptors in mouse striatal membranes. The D-1 and D-2 specific binding of [3H]fluphenazine was discriminated by the dopamine antagonists SCH-23390 (D-1 selective) and spiperone (D-2 selective). Saturation analyses of these two sites yielded a D-1 receptor density in mouse striatum of 1,400 fmol/mg of protein and a D-2 receptor density of 700 fmol/mg of protein. The affinity of [3H]fluphenazine for the D-2 site was slightly greater than for the D-1 site; the equilibrium dissociation constant (KD) was 0.7 versus 3.2 nM, respectively. Assay conditions are described that reduce nonspecific binding of [3H]fluphenazine to acceptable levels (35% of total binding at 1 nM [3H]fluphenazine). By comparison of displacement curves from a series of dopaminergic and nondopaminergic ligands, the pharmacological specificity of [3H]fluphenazine binding in mouse striatum was demonstrated to be dopaminergic. Only small amounts of dopamine-specific (apomorphine-sensitive) [3H]fluphenazine binding were found in other brain regions. However, chlorpromazine displaced considerable [3H]fluphenazine from all brain regions, including cerebellum, suggesting the presence of a [3H]fluphenazine binding site with a phenothiazine specificity.  相似文献   

4.
Abstract: The sequence of molecular events linking depolarisation-dependent calcium influx to calcium-stimulated protein phosphorylation is unknown. In this study the effect of the neuroleptic drug fluphenazine on depolarisation-dependent protein phosphorylation was investigated using an intact postmitochondrial pellet isolated from rat cerebral cortex. Fluphenazine, in a dose-dependent manner, completely inhibited the increases in protein phosphorylation observed previously. The concentration of fluphenazine required for 50% inhibition varied for different phosphoproteins but for synapsin I was 123 μ M. Other neuroleptics produced effects similar to fluphenazine with their order of potency being thioridazine > haloperidol > trifluoperazine > fluphenazine > chlorpromazine. Fluphenazine also increased the phosphorylation of proteins in nondepolarised controls at concentrations of 20 and 60 μ M. The inhibition of depolarisation-dependent phosphorylation was apparently not due to a loss of synaptosomal integrity or viability, a decrease in calcium uptake, a change in substrate availability, or to a change in protein phosphatase activity. The data are most consistent with an inhibition of protein kinase activity by blockade of calmodulin or phospholipid activation.  相似文献   

5.
The injection of oestradiol benzoate as an aqueous microcrystal suspension, in a dose of 1 mg twice a week, evokes a marked adenohypophyseal growth reaction in male rats. The reaction is potentiated by dopaminergic antagonists from the group of neuroleptics (specifically perphenazine and thioridazine). Elicitation of the same adenohypophyseal reaction required twice as much thioridazine (10 mg/rat per day) as perphenazine. Thyroxine inhibited the adenohypophyseal growth reaction to oestradiol. The serum polyphenol oxidase (ceruloplasmin) level rose after oestradiol and perphenazine and thioridazine slightly potentiated the increase.  相似文献   

6.
A Jakubovic 《Peptides》1982,3(1):21-26
Antischizophrenic drugs, reduced in a concentration-dependent fashion enkephalin degradation by the soluble and particulate fractions of the human cerebral cortex and cerebellum. The order of potency is as follows: thioridazine greater than chlorpromazine greater than fluphenazine greater than haloperidol greater than or equal to promazine with IC50 of 50, 80, 120, 200-250 micro M, respectively. Kinetic studies revealed non-competitive and competitive inhibition by thioridazine and chlorpromizine, respectively. Narcotics, were weak inhibitors of enkephalin degradation. For dl-, d-, l-methadone and l-alpha-acetylmethadol, IC50 was about 500 micro M, and 1000 micro M for heroin and morphine. It is suggested that inhibition of the degradation of endogenous morphinomimetic peptides in the CNS may be a crucial factor governing the pharmacology of some neuroleptics and other psychoactive drugs. Enkephalin-hydrolyzing activity was ubiquitous and exhibited considerable regional differences in the normal human and in Huntington's chorea brains. The rate of enkephalin degradation is generally higher in the subcortical nuclei than in the cortex and cerebellum. The highest hydrolytic activity was found in the substantia nigra, anterior thalamus, septal area, globus pallidus and caudate nucleus, in this decreasing order.  相似文献   

7.
An increasing interest in the association of the presence of antibodies to Toxoplasma gondii and the development of schizophrenia in patients has been generated over the last several years. Some antischizophrenia agents have been shown to have activity against T. gondii in cell culture assays and to ameliorate behavioral changes associated with chronic T. gondii infection in rats. In the present study, we examined the effects of commonly used antipsychotic and mood stabilizing agents (haloperidol, clozapine, fluphenazine, trifluoperazine, and thioridazine) for activity against developing tachyzoites of the RH strain of T. gondii in human fibroblast cell cultures. Neither haloperidol nor clozapine had a measurable effect. Fluphenazine had an IC(50) of 1.7 μM, thioridazine had an IC(50) of 1.2 μM, and trifluoperazine had an IC(50) of 3.8 μM. Our study demonstrates that some agents used to treat schizophrenia have the ability to inhibit T. gondii proliferation in cell culture.  相似文献   

8.
Several antipsychotic drugs reverse the dopamine-induced inhibition of prolactin release by rat pituitary cell cultures. Paradoxically, at high doses and without dopamine, antipsychotic drugs can also inhibit prolactin secretion. The mechanism underlying this phenomenon is unclear. Some evidence suggests that these drugs have an agonistic action. We sought to verify whether clozapine and fluphenazine, at doses higher than those reversing dopamine-induced inhibition of prolactin secretion in vitro, show this paradoxical effect and eventually a partial agonistic action. Both antipsychotics inhibited prolactin secretion, clozapine at doses starting from 10(-6) M and fluphenazine from 10(-7) M. Haloperidol reversed clozapine-induced prolactin inhibition but left fluphenazine-induced inhibition unchanged. These in vitro findings suggest that clozapine has a partial agonistic action on dopaminergic receptors but fluphenazine does not.  相似文献   

9.
In order to gain insights into the mechanism of phototoxicity of the neuroleptic drugs fluphenazine, perphenazine and thioridazine in cultured cells, studies were performed with murine 3T3 fibroblasts, aimed at identifying some cellular targets responsible for photoinduced cell death and possible cytotoxic reactive species involved in the photosensitization process. 3T3 fibroblasts incubated with 5 microM drugs and irradiated with UVA light (up to 8 J/cm2) underwent cell death, the extent of which depended on light dose. Of the three drugs, fluphenazine exhibited the highest phototoxicity and 100% cell death was achieved with a light dose of 5 J/cm2. Superoxide dismutase and alpha-tocopherol exerted a dose-dependent protective effect against drug phototoxicity, whereas N-acetylcysteine failed to do so. These findings indicate that superoxide anion and other free radical intermediates, generated in lipophilic cellular environments, play a role in photoinduced toxicity. Phototreatment of drug-loaded cells induces release of the cytosolic enzyme lactate dehydrogenase and causes loss of activity of mitochondrial NADH dehydrogenase, indicating that plasma membrane and mitochondria are among the targets of the phototoxicity of these drugs.  相似文献   

10.
Pretreatment of rats with agents with strong antimuscarinic activity in the CNS (scopolamine, benztropine, trihexyphenidyl, amitriptyline, and thioridazine) but not their inactive congeners (desipramine, fluphenazine, or haloperidol) led to significant increases in the maximum apparent density of binding sites for 3H-QNB in cerebral cortical or striatal membranes. The dopamine agonist bromocriptine induced a similar effect that was blocked by haloperidol in striatum. None of these treatments altered the apparent affinity of the test ligand. Tolerance to the behavioral activating action of scopolamine developed over two weeks of daily treatment. This change was paralleled by an increase in 3H-QNB binding in cerebral cortex which was dependent on the dose and duration of treatment with scopolamine and persisted for a week following two weeks of treatment. Scopolamine pretreatment led to a significant increase in basal, spontaneous motor activity in the rat, but also to a marked increase in the motor-inhibitory actions of the centrally active muscarinic agonist pilocarpine. These results add to the impression that decreased availability of ACh agonists can significantly increase the availability and functional activity of central muscarinic ACh receptors to reflect "disuse supersensitivity."  相似文献   

11.
The effects of two different classes of calmodulin antagonists on the catalytic activities of purified pyruvate dehydrogenase (PDH) phosphatase and PDH complex (PDC) were studied. In general, PDH phosphatase was more strongly inhibited than PDC by the calmodulin antagonists with the following potency order: fluphenazine > chlorpromazine > thioridazine > triflupromazine. Promazine and two sulfonamides (W-5 and W-7) did not suppress PDH phosphatase activity at 1 mM concentrations, while about 20% of PDC activity was inhibited by these antagonists. Fluphenazine-mediated inhibition of PDH phosphatase was observed with the purified PDC as well as intact mitochondria. Although Ca2+ stimulates PDH phosphatase activity, the addition of exogenous Ca2+ did not overcome the inhibition by calmodulin antagonists. These results suggest that the suppression of PDH phosphatase activity is dependent upon the structure of the individual calmodulin antagonist and appears to be Ca(2+)-independent. Kinetic analysis showed a noncompetitive inhibition of PDH phosphatase by fluphenazine, indicating that it binds to different site(s) from the catalytic site of the enzyme.  相似文献   

12.
The short-term effects of fluphenazine on plasma HVA concentrations were compared with the effects of fluphenazine and concurrent administration of debrisoquin, a monoamine oxidase inhibitor which does not cross the blood brain barrier and is used to enhance the CNS contribution to circulating plasma HVA concentrations. Fluphenazine significantly increased plasma HVA with or without debrisoquin 24 hours following the initiation of treatment. Domperidone, a butyrophenone dopamine antagonist which acts only in the peripheral nervous system, failed to alter plasma HVA concentrations. These data suggest that the acute effects of neuroleptic drugs on plasma HVA concentrations are dependent upon interaction with CNS dopaminergic systems and provide additional support for the use of plasma HVA as a reflection of CNS dopamine system activity in clinical studies.  相似文献   

13.
Despite the fact that thioridazine is used clinically as a neuroleptic drug, little is known about the molecular mechanisms underlying its biological effects, in particular about its interactions with membranes. In the present work we investigate the influence of thioridazine on model and cell membranes, using calorimetry, DPH fluorescence polarization measurements, studies of haemolysis and scanning electron microscopy. The experiments show that thioridazine interacts with lipid bilayers and intercalates into bilayer structure. We found that erythrocyte stomatocytosis induced by the drug might be related to preferential interaction of thioridazine with charged lipids.  相似文献   

14.
The antipsychotic drug thioridazine is a candidate drug for an alternative treatment of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) in combination with the β-lactam antibiotic oxacillin. The drug has been shown to have the capability to resensitize MRSA to oxacillin. We have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis in response to thioridazine in combination with oxacillin. We observed that the oxacillin-induced expression of genes belonging to the VraSR regulon is reduced by the addition of thioridazine. The exclusion of such key factors involved in cell wall biosynthesis will most likely lead to a weakened cell wall and affect the ability of the bacteria to sustain oxacillin treatment. Furthermore, we found that thioridazine itself reduces the expression level of selected virulence genes and that selected toxin genes are not induced by thioridazine. In the present study, we find indications that the mechanism underlying reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis.  相似文献   

15.
S F Leibowitz  L Hor 《Peptides》1982,3(3):421-428
Brain cannulated rats were injected with the opioid peptide beta-endorphin (beta-EP) directly into the hypothalamic paraventricular nucleus (PVN) where norepinephrine (NE) is most effective in stimulating eating behavior. Beta-Endorphin (1.0 nmole) reliably increased food intake in satiated animals, and this response was blocked by local administration of the selective opiate antagonist naloxone. The eating induced by beta-EP was positively correlated in magnitude with the NE response and, like NE, was antagonized by PVN injection of the alpha-noradrenergic blocker phentolamine. Naloxone had no effect on NE-induced eating, and the dopaminergic blocker fluphenazine failed to alter either beta-EP or NE eating. When injected simultaneously, at maximally effective doses, beta-EP and NE produced an eating response which was significantly larger than either of the responses elicited separately by beta-EP or NE and was essentially equal to the sum of these two responses. The evidence obtained in this study suggests that beta-EP and NE stimulate food ingestion through their action on PVN opiate and alpha-noradrenergic receptors, respectively, and that beta-EP's action is closely related to, and in part may be dependent upon, the PVN alpha-noradrenergic system for feeding control.  相似文献   

16.
Recently, thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), a well-known anti-psychotic agent was found to have anti-cancer activity in cancer cells. However, the molecular mechanism of the agent in cellular signal pathways has not been well defined. Thioridazine significantly increased early- and late-stage apoptotic fraction in cervical and endometrial cancer cells, suggesting that suppression of cell growth by thioridazine was due to the induction of apoptosis. Cell cycle analysis indicated thioridazine induced the down-regulation of cyclin D1, cyclin A and CDK4, and the induction of p21 and p27, a cyclin-dependent kinase inhibitor. Additionally, we compared the influence of thioridazine with cisplatin used as a control, and similar patterns between the two drugs were observed in cervical and endometrial cancer cell lines. Furthermore, as expected, thioridazine successfully inhibited phosphorylation of Akt, phosphorylation of 4E-BP1 and phosphorylation of p70S6K, which is one of the best characterized targets of the mTOR complex cascade. These results suggest that thioridazine effectively suppresses tumor growth activity by targeting the PI3K/Akt/mTOR/p70S6K signaling pathway.  相似文献   

17.
After unique ip injection (11,78 mEq/kg) LiCl increases in the Rat catalepsy produced by chlorpromazine, prochlorperazine, fluphenazine, levomepromazine, haloperidol and reserpine. This phenomenon is more important according to cataleptigenic properties of neuroleptic drugs. After repeated injections of LiCl (5 mEq/kg/d/5 dip) potentiation of catalepsy is more fugacious and not produced by levomepromazine and reserpine. LiCl would interfere at enzymatic level with dopaminergic transmission either by inhibiting activity of cerebral adenylcyclase (unique injection) or by inhibiting dopamine synthesis (repeated injections).  相似文献   

18.
Thioridazine has been known as an antipsychotic agent, but it also has anticancer activity. However, the effect of thioridazine on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitization has not yet been studied. Here, we investigated the ability of thioridazine to sensitize TRAIL-mediated apoptosis. Combined treatment with thioridazine and TRAIL markedly induced apoptosis in various human carcinoma cells, including renal carcinoma (Caki, ACHN, and A498), breast carcinoma (MDA-MB231), and glioma (U251MG) cells, but not in normal mouse kidney cells (TMCK-1) and human normal mesangial cells. We found that thioridazine downregulated c-FLIP(L) and Mcl-1 expression at the post-translational level via an increase in proteasome activity. The overexpression of c-FLIP(L) and Mcl-1 overcame thioridazine plus TRAIL-induced apoptosis. We further observed that thioridazine inhibited the Akt signaling pathway. In contrast, although other phosphatidylinositol-3-kinase/Akt inhibitors (LY294002 and wortmannin) sensitized TRAIL-mediated apoptosis, c-FLIP(L) and Mcl-1 expressions were not altered. Furthermore, thioridazine increased the production of reactive oxygen species (ROS) in Caki cells, and ROS scavengers (N-acetylcysteine, glutathione ethyl ester, and trolox) inhibited thioridazine plus TRAIL-induced apoptosis, as well as Akt inhibition and the downregulation of c-FLIP(L) and Mcl-1. Collectively, our study demonstrates that thioridazine enhances TRAIL-mediated apoptosis via the ROS-mediated inhibition of Akt signaling and the downregulation of c-FLIP(L) and Mcl-1 at the post-translational level.  相似文献   

19.
When oxygen is slowly depleted from growing cultures of Mycobacterium tuberculosis, they enter a state of nonreplicating persistence that resembles the dormant state seen with latent tuberculosis. In this hypoxic state, nitrate reductase activity is strongly induced. Nitrate in the medium had no effect on long-term persistence during gradual oxygen depletion (Wayne model) for up to 46 days, but significantly enhanced survival during sudden anaerobiosis. This enhancement required a functional nitrate reductase. Thioridazine is a member of the class of phenothiazines that act, in part, by inhibiting respiration. Thioridazine was toxic to both actively growing and nonreplicating cultures of M. tuberculosis. At a sublethal concentration of thioridazine, nitrate in the medium improved the growth. At lethal concentrations of thioridazine, nitrate increased survival during aerobic incubation as well as in microaerobic cultures that had just entered nonreplicating persistence (NRP-1). In contrast, the survival of anaerobic persistent (NRP-2) cultures exposed to thioridazine was not increased by the addition of nitrate. Nitrate reduction is proposed to play a role during the sudden interruption of aerobic respiration due to causes such as hypoxia, thioridazine, or nitric oxide.  相似文献   

20.
Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号