首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous experiments rats pretreated with slow-release d-amphetamine (d-Amp) pellets for 412 days, given a 12-hr drug-free period, and then injected with d-Amp have been found to show a behavioral syndrome which has similarities to that induced by acute injections of the hallucinogens LSD and mescaline. The present results indicate that rats administered this same drug regimen have large decreases in Dopamine (DA), dihydroxyphenyl acetic acid (Dopac), and homovanillic acid (HVA) in caudate nucleus, smaller decreases in DA with no changes in Dopac and HVA levels in nucleus accumbens, but no alterations in 5-hydroxytryptamine (5HT) and 5-hydroxyindole acetic acid (5HIAA) levels in caudate, accumbens, brainstem and hippocampus. Increased 5HIAA levels are found in rats sacrificed with pellets intact following 3 days of continuous d-Amp administration, while sleep deprived and in motor stereotypies. The late and hallucinatory stage following continuous d-amp is correlated more closely with alterations in dopamine than of 5HT.  相似文献   

2.
Quipazine, 2-(1-piperazinyl)-quinoline, is a drug that has been reported to stimulate serotonin receptors in brain. We therefore studied the effect of quipazine on several parameters of serotonin metabolism in rat brain. Quipazine caused a slight, dose-related elevation of serotonin levels and decrease in 5-hydroxyindoleacetic acid levels for 2–4 hrs after it was administered. The decrease in 5-hydroxyindoleacetic acid levels was probably due primarily to a depression of 5-hydroxyindole synthesis, since quipazine also decreased the rate of 5-hydroxytryptophan accumulation after NSD 1015, the rate of serotonin decline after α-propyldopacetamide, and the rate of 5-hydroxyindoleacetic acid accumulation after probenecid. The elevation of serotonin was probably due to weak inhibition of monoamine oxidase. Quipazine reversibly inhibited the oxidation of serotonin by rat brain monoamine oxidase invitro and protected against the irreversible inactivation of the enzyme invivo. Quipazine also was a potent inhibitor of serotonin uptake into brain synaptosomes invitro and attained concentrations in brain higher than the invitro IC50. However, quipazine did not prevent the depletion of brain serotonin by p-chloroamphetamine invivo. In addition to stimulating serotonin receptors in brain, quipazine may inhibit monoamine oxidase and serotonin reuptake invivo.  相似文献   

3.
Diazepam elevates serotonin (5HT) and 5-hydroxyindoleacetic acid (5HIAA) concentrations in rat brain and spinal cord. The maximal effect occurs 1–2 hrs after drug injection and is dose related between 5–20 mg/kg (intraperitoneal). The action of diazepam on brain 5HT and 5HIAA concentrations is modified by previous food consumption: the ingestion of a diet that raises brain 5HT and 5HIAA one hour before drug injection enhances the diazepam-induced increase in brain indoles; consumption of a diet that lowers brain 5HT and 5HIAA partially blocks the elevation in brain indoles that follows diazepam injection.  相似文献   

4.
The relationship between the 24 h rhythm in 5-hydroxy-tryptamine (5HT) levels in rat brain, the availability of precursors of 5HT and the concentration of its major metabolite, 5-hydroxyindole acetic acid (5HIAA) has been investigated. Serum total and "free" tryptophan (TRY) levels and brain TRY levels all show a 24 h rhythm with highest concentrations in the middle of the dark phase i.e. 12 h displaced from that of the 5HT rhythm. No 24 h variation in either tryptophan-5-hydroxylase or monoamine oxidase activity was detected, nor did brain 5-hydroxytryptophan (5HTP) levels vary with clock hour. Changes in 5HIAA concentration paralleled those of 5Ht. The uptake of 14C-5HTP, 14C-TRY and 14C-5HT into homogenates of the septal region of rat brain did not display a circadian rhythm, although there was evidence that uptake of 14C-TRY in an isolated synaptosomal preparation from the same region was greater during the light phase, indicating the possibility that uptake of the precursor into the nerve ending may be, in part, responsible for the 24 h rhythm in brain 5HT. It is concluded that brain 5HT levels are independent of the serum or brain TRY concentrations measured. Since changes in 5HT with clock hour are paralleled by changes in 5HIAA, it also seems unlikely that the increase in brain 5HT during the light phase is caused by a decreased release of 5HT from nerve endings.  相似文献   

5.
Cyclic 3′, 5′-adenosine monophosphate (cAMP) has been identified in the ciliated gill epithelium of the marine mussel Mytilusedulis. In concentrations which stimulate the rate of particle transport by frontal gill cilia, DA and 5HT stimulate levels of cAMP within the gill. The stimulation occurs in as early as 15 sec and is graded from 10?6M to 10?4M. DA plus 5HT is not additive at maximal effective concentrations of both amines. ACH does not mimic the DA or 5HT stimulation of cAMP. Theophylline alone has a weak effect on cAMP levels; however, the effect of theophylline is potentiated in the presence of DA or 5HT. Dibutyryl cAMP produces a gradual stimulation in the rate of particle transport. It is suggested that the dopaminergic and serotonergic excitatory control of particle transport by frontal gill cilia of Mytilusedulis is mediated through a cAMP second messenger system.  相似文献   

6.
In rats, dietary protein is known to influence brain tryptophan (TRP) concentrations and serotonin (5HT) synthesis. However, few studies have examined this relationship in primates (including humans). We therefore studied the effect in monkeys of changes in chronic protein intake on plasma and cerebrospinal fluid (CSF) concentrations of TRP and 5-hydroxyindoleacetic acid (5HIAA), the principal 5HT metabolite. Juvenile male monkeys (Macacca mulatta) consumed for sequential 4-week periods diets differing in protein content (~23% ~ 16% ~10% ~6% protein [%-energy/day]). Each day, food was presented as a morning meal of fruit, and an afternoon meal consisting of a pelleted, commercial diet and fruit. During week 4 on each diet, blood and CSF were sampled diurnally via indwelling catheters. Plasma and CSF TRP varied diurnally and with dietary protein content. On all diets, CSF TRP declined modestly in the morning, and increased in the afternoon; the magnitude of the increments varied directly with dietary protein content. Diurnal variations were absent for CSF 5HIAA; however, CSF 5HIAA varied directly with chronic dietary protein content. We conclude that dietary protein content can chronically influence CSF TRP concentrations in monkeys. The variation in CSF 5HIAA suggests chronic protein intake may influence serotonin synthesis and turnover, perhaps via changes in TRP concentrations.  相似文献   

7.
Met5-enkephalin amide, D-Ala2-Met5-enkephalin amide, D-Ala2-Leu5-enkephalin amide, morphine sulfate and naloxone hydrochloride were examined for their effects on growth hormone and prolactin release invivo and invitro. Subcutaneous injection of D-Ala2-Met5 enkephalin amidea, D-Ala2-Leu5 enkephalin amideb and morphine sulfate, but not Met5-enkephalin and amidec, resulted in significant elevations in the serum growth hormone and prolactin of immature female rats. Naloxone blocked the hormone-stimulatory effect of the opioid receptor agonists and when administered alone significantly reduced serum growth hormone and prolactin concentrations. None of the drugs demonstrated a direct action on anterior pituitary tissue growth hormone or prolactin release invitro.  相似文献   

8.
The aim of this study was to investigate the effect of exposure to L-tryptophan (TRP) on the metabolism of 5-hydroxytryptamine (5HT) and behavior of medaka. In the first experiment, the fish were exposed to a 0, 1, 2 or 4 g/l of TRP solution for 24 hr. Although no significant difference in the brain 5HT content was detected, 5-hydroxyindoleacetic acid (5HIAA), a major 5HT metabolite, increased in a dose-dependent fashion. In the second experiment, the fish were maintained in a 0 or 4 g/l of TRP solution for 28 hr, and then their behaviors were monitored. The fish reared in under TRP solution were divided into two groups and transferred to either fresh water or a TRP solution. The locomotion of the TRP-treated group significantly increased compared to the control group irrespective of water conditions. It was suggested that TRP exposure activated the brain 5HTnergic systems and stimulated behavior of medaka.  相似文献   

9.
Serotonin (5HT) synthesis in brain is influenced by precursor (tryptophan (TRP)) concentrations, which are modified by food ingestion. Hence, in rats, a carbohydrate meal raises brain TRP and 5HT; a protein-containing meal does not, but little attention has focused on differences among dietary proteins. Recently, single meals containing different proteins have been shown to produce marked changes in TRP and 5HT. The present studies evaluate if such differences persist when rats ingest such diets chronically. Male rats were studied that ingested diets for 9 days containing zein, wheat gluten, soy protein, casein, or α-lactalbumin (17% dry weight). Brain TRP varied up to eightfold, and 5HT synthesis fivefold among the different protein groups. TYR and LEU concentrations, and catecholamine synthesis rate in brain varied much less. The effects of dietary protein on brain TRP and 5HT previously noted after single meals thus continue undiminished when such diets are consumed chronically.  相似文献   

10.
A gas chromatograph/quadrupole mass spectrometer system has been employed to estimate the turnover of acetylcholine in mouse brain in vivo following a pulse intravenous injection of choline, using discrete deuterium labelled variants of choline and acetylcholine as tracer and internal standards. There appear to be two functional pools with turnover rates of 1.4 and 7.9 nmol gm?1min?1.  相似文献   

11.
Summary. It has been shown in various studies that increase in serotonergic neurotransmission is associated with increased memory consolidation whereas low brain 5HT impairs memory performance. In the first phase of our study we found that tryptophan (TRP) administration for 6 weeks increased plasma TRP and whole brain TRP, 5HT and 5HIAA levels. Many brain regions are involved in the learning process but particularly the hippocampus is known to have key role in learning and memory. The present study was therefore designed to investigate the effects of TRP loading particularly on hippocampal 5HT metabolism and cognitive performance in rats. TRP-treated rats demonstrated spatial enhancement as evidenced by a significant decrease in time to find the hidden food reward in radial arm maze test (RAM). The important finding of the present study was the greater increase in the 5HT metabolism in hippocampus than in any other brain region of the TRP-treated rats. This increased 5HT metabolism in the hippocampus emphasizes the involvement of this region in memory process.  相似文献   

12.
Metabolism and uptake of L-[1-14C]pipecolate was studied in the rat through tail vein injection at low (30 μg/kg) and high (30 mg/kg) doses. No radioactive compound other than L-pipecolate was detected in the brain or heart samples 0.5 to 60 min after injection. The contents of L-pipecolate in the brain dropped rapidly to reach a plateau value 2 min after injection both in the low and high dose experiments (from 0.06 to 0.05 and from 86 to 55 nmole/g brain, respectively). Similar results were observed for the heart except that the heart had L-pipecolate contents 2–3 fold higher than the brain at every time interval. The influx of L-pipecolate to the brain, as measured by the plasma/brain ratio of its contents, was 3 fold lower than the heart at each sampling point throughout the course of measurement for both dosages. The influx of L-pipecolate from the plasma to the heart reached an equilibrium, i.e., plasma/heart = 1, 60 min after injection for both dosages; the plasma to brain ratio was 3 at 60 min. These results indicate that there is a blood-brain transport barrier for L-pipecolate in the rat, which may account for the differences in neuronal effects of L-pipecolate when administered intracerebrally or intraperitoneally.  相似文献   

13.
The exponential plasma specific activity curve 2.5 to 12.5 min after injection (sc) of [14C]tyrosine was integrated and divided by time to obtain the mathematical relationship between the average equivalent specific activity S and the measured specific activity S in any individual animal. S is the constant, average value of S that is equivalent to the curvllinearly varying quantity that the body tissues are actually exposed to. Dividing the total brain radioactivity by S gave the tissue Tyr uptake U. The function dUdt is linear from 2.5 to 12.5 min and represents the rate of uptake of the amino acid. Incorporation into protein was similarly measured. Brain uptake of Tyr averaged 7.06, and the apparent protein incorporation was 1.99 nmol/g of brain per min. The γ-glutamyl cycle inhibitor l-methionine-RS-sulfoximine reduced total brain uptake of tyrosine by 42.8% and the apparent rate of protein incorporation by 39.0%.  相似文献   

14.
Incorporation of C14 Leucine was determined in vitro or in vivo in isolated mitochondria and microsomes of rat brain and liver after acute or chronic ethanol administration in vivo.The protein synthesis in mitochondrial and microsomal preparation was inhibited respectively by chloramphenicol and cycloeximide, specific inhibitors for the two systems tested. The experimental data demonstrate that the in vitro protein synthesis in both systems, mitochondrial and microsomal, is strongly affected only after chronic treatment which produces significant activation at the mitochondrial and microsomal level in the liver and an inhibition on the same systems of the brain.The data for in vivo protein synthesis instead show strong inhibition after acute administration, except for brain mitochondria, which are practically unaffected, while after chronic treatment no significant alterations are observed.  相似文献   

15.
Circadian rhythm and the relationship between the concentration of serotonin (5HT) and related substances (5-hydroxyindoleacetic acid; 5HIAA and tryptophan; Trp) in mouse brain, stomach and blood have been studied. All factors underwent circadian changes in the brain and blood. 5HT and 5HIAA levels in the stomach showed no circadian fluctuation. The concentrations of 5HT in the brain and blood did not correlate. Significant correlations were found between other serotonergic parameters analyzed in brain, stomach and blood. A significant negative correlation was observed between brain 5HIAA and blood 5HIAA. The concentration of tryptophan in the brain was correlated with the plasma total tryptophan level. There was fairly significant correlation (p less than 0.06) between brain serotonin and plasma tryptophan levels. The brain serotonin and tryptophan levels were strongly correlated (R = 0.410, p less than 0.03). Significant negative correlation was found between serotonin in the blood and serotonin in the stomach as well as between its level in the brain and in the stomach. The significance of these findings and their relationship to the use of peripheral serotonergic system as a model of neurons are discussed.  相似文献   

16.
Measurements of populations of unlabeled RNA indicate that the absolute concentrations and relative proportions of poly(A)-RNA and of nonpoly(A)-RNA, relative to total cellular RNA are similar in three brain regions. The incorporation of 3H-uridine into poly(A)-RNA and nonpoly(A)-RNA was measured in cerebrum, diencephalon, and midbrain-hindbrain from 15 min through 8.0 hr after intraventricular injection of the precursor into adult rat brains. Incorporation of 3H-uridine into poly(A)-RNA was very rapid and reached maximum levels of specific activity within 30 to 120 minutes, depending upon locus, after injection of the precursor. The specific activity of nonpoly(A)-RNA increased with time, but remained lower than that of poly(A)-RNA throughout the 8.0 hr period. Regionally differential synthesis occurred both in poly(A)-RNA and nonpoly(A)-RNA in the several brain regions. Establishment of the time kinetics of brain RNA synthesis should provide useful basis for selection of the conditions for labeling pulses for further studies of in vivo RNA metabolism.  相似文献   

17.
Maximum levels of binding of α-bungarotoxin to foetal human brain membranes were found to remain essentially constant at 30–50 fmol/mg protein (1.1–1.5 pmol/g wet weight in whole brain) between gestational ages of 10 and 24 weeks. Equilibrium binding of α-bungarotoxin to both membranes and to detergent extracts showed saturable specific binding to a single class of sites with Kd (app) values of 3.5 × 10?9 M and 2.4 × 10?9 M respectively. Association rate constants, determined from time courses of binding of α-bungarotoxin to membranes and detergent extracts, were 2.3 × 105 M?1 sec?1 and 2.6 × 105 M?1 sec?1 respectively. Dissociation of α-bungarotoxin from both membrane and detergent extracts showed a rapid initial rate with T12 approx 15 min which, in the case of the detergent extract, was followed by a slower dissociation accounting for the remaining 20% of the bound ligand. Competition studies with a number of cholinergic ligands indicated that the α-bungarotoxin-binding sites in foetal brain display a predominantly nicotinic profile.  相似文献   

18.
The effects of (?)?Δ9-THC were studied on the release and accumulation of 3H5HT and 3HNE in a rat forebrain synaptosomal preparation. These studies were designed to evaluate the possible sites of action of Δ9-THC on these two processes. Δ9-THC inhibited the accumulation of 3H-leucine, 3HNE, and 3H5HT, as well as facilitated the release of the latter two amines (to a lesser degree), but had no effect on the release of 3H-leucine. Eighteen-hour pre-treatment with reserpine diminished the ability of Δ9-THC to induce release of 3H5HT, but had no effect on the in vitro inhibition of synaptosomal uptake of this amine. Concentrations of Δ9-THC which blocked the uptake of 3H5HT also reduced the conversion of 3H5HT to 3H-5-hydroxy-3-indoleacetic acid. However, Δ9-THC, at concentrations which facilitated release of 3H5HT from preloaded synaptosomes, increased the amount of 3H5HIAA found in the medium. Taken together, these data suggest that Δ9-THC facilitates release from the synaptic vesicle and retards accumulation at the neuronal membrane.  相似文献   

19.
Eric A. Stone 《Life sciences》1976,19(10):1491-1498
The present study utilized intraventricular injection of Na235SO4 to detect drug induced changes in the in vivo formation of the two major metabolites of rat brain norepinephrine (NE) - the sulfate conjugates of 3-methoxy-4-hydroxyphenylglycol (MOPEG-SO4) and 3,4-dihyd (DOPEG-SO4). Assays involved the hypothalamus only. Rats pretreated with clonidine showed a reduced formation of both MOPEG-35SO4 and DOPEG-35SO4 after intraventricular Na235SO4 as well as reduced synthesis of 3H-NE from intraventricular 3H-tyrosine. Phenoxybenzamine (POB) produced increases in the synthesis of both 35S-labeled conjugates and 3H-NE. Neither drug altered the loss of exogenous 3H-MOPEG-SO4 but clonidine increased both the accumulation of labeled sulfate and the sulfation of exogenous MOPEG in pheniprazine treated rats. These results show that the rates of formation of the labeled glycol sulfates are sensitive indicators of changes in brain NE turnover but can also be influenced by factors involved in sulfation that are unrelated to NE turnover. Blockade of NE synthesis with alpha methyltyrosine did not affect resting or POB-elevated levels of the labeled conjugates until stores of NE were reduced by 40%. The latter findings suggest that central noradrenergic neurons can release and metabolize NE at a normal rate despite synthesis blockade so long as adequate stores of NE are available.  相似文献   

20.
D M Hunt 《Life sciences》1976,19(12):1913-1919
The injection of copper chloride overcomes the lethality and pigment deficiency in the brindled (Mobr) mouse mutant but copper levels remain depressed in the liver and brain, and a further accumulation occurs in the kidney. The copper-dependent synthesis of brain noradrenaline returns to normal but the activity of brain cytochrome c oxidase, although increased, remains depressed. Significant changes in tissue copper content of female brindled heterozygotes are reported and in each case, the changes exceed those expected on the basis of X-inactivation. The significance of these results to the development of a satisfactory treatment regime for this disease is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号