首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented to indicate a generalized role for the terminal sialic acid residues of circulating erythrocytes of rabbit. Neuraminidase is shown to remove only sialic acid from these erythrocytes. Neuraminidase-treated and intact rabbit erythrocytes have similar in vitro properties, except those of cellular charge and cellular adhesion in their sera. These properties include similar shape, osmotic fragility curve, autohemolysis at 37°, K+ retention and pyruvate kinase activity. The D-glucose 6-phosphate dehydrogenase and the cholinesterase activities are higher on the neuraminidase-treated erythrocytes than on the intact ones. After injection into rabbits, the sialic acid-less erythrocytes tested, were promptly removed from the circulation; intact erythrocytes, previously incubated under the same conditions but without neuraminidase, were removed from the circulation after a significantly longer period.  相似文献   

2.
The ionophores A23187 and X537A have markedly different actions on the MEPP frequency recorded at the frog neuromuscular junction. A23187 has no significant effect at 9–17°C, but causes a small increase in MEPP frequency at 6°C. At 25°C, on the other hand, A23187 causes a marked and progressive rise in MEPP rate. It is suggested that, in spite of increased Ca2+ influx associated with application of the ionophore, the presynaptic terminals can maintain [Ca2+]i constant at 9–17°C, although [Ca2+]i rises at higher and lower temperatures, causing an increase in frequency of MEPPs. As previously reported by Kita and Van der Kloot (5) X537A causes a dramatic increase in MEPP frequency, but it is suggested that its action is more complex and probably involves an increase in Na+ permeability.  相似文献   

3.
M. Tester  E. A. C. MacRobbie 《Planta》1990,180(4):569-581
The action of a wide range of drugs effective on Ca2+ channels in animal tissues has been measured on Ca2+ channels open during the action potential of the giant-celled green alga,Chara corallina. Of the organic effectors used, only the 1,4-dihydropyridines were found to inhibit reversibly Ca2+ influx, including, unexpectedly, Bay K 8644 and both isomers of 202–791. Methoxyverapamil (D-600), diltiazem, and the diphenylbutylpiperidines, fluspirilene and pimozide were found not to affect the Ca2+ influx. Conversely, bepridil greatly and irreversibly stimulated Ca2+ influx, and with time, stopped cytoplasmic streaming (which is sensitive to increases in cytoplasmic Ca2+). By apparently altering the cytoplasmic Ca2+ levels with various drugs, it was found that (with the exception of the inorganic cation, La3+) treatments likely to lead to an increase in cytoplasmic Ca2+ levels caused an increase in the rate of closure of the K+ channels. Similarly, treatments likely to lead to a decrease in cytoplasmic Ca2+ decreased the rate of K+ channel closure. The main effect of bepridil on the K+ channels was to increase the rate of voltage-dependent channel closure. The same effect was obtained upon increasing the external concentration of Ca2+, but it is likely that this was due to effects on the external face of the K+ channel. Addition of any of the 1,4-dihydropyridines had the opposite effect on the K+ channels, slowing the rate of channel closure. They sometimes also reduced K+ conductance, but this could well be a direct effect on the K+ channel; high concentrations (50 to 100 μM) of bepridil also reduced K+ conductance. No effect of photon irradiance or of abscisic acid could be consistently shown on the K+ channels. These results indicate a control of the gating of K+ channels by cytoplasmic Ca2+, with increased free Ca2+ levels leading to an increased rate of K+-channel closure. As well as inhibiting Ca2+ channels, it is suggested that La3+ acts on a Ca2+-binding site of the K+ channel, mimicking the effect of Ca2+ and increasing the rate of channel closure.  相似文献   

4.
1. Ca2+-antagonists counteract the muscular activity of the sea urchin pluteus. Agents that block rapid Na+-channels have no effect.2. High muscular activity is induced by increasing the sea water concentration of Ca2+ or K+ and by a Ca2+-ionophore. The stimulatory effects tend to decline.3. Muscarinic agents counteract the effects of Ca2+ and K+.4. Variation in the concentration of Ca2+ or K+ has profound effects on the response to nicotinic agents.5. It is suggested that Ca2+ plays the role as a charge-carrier and in the release of monoamines from an inner source, and that an excessive Ca2+-influx induces an outflux of K+ leading to hyperpolarization and abolition of the impulse activity.  相似文献   

5.
The cellular mechanisms that regulate potassium (K+) channels in guard cells have been the subject of recent research, as K+ channel modulation has been suggested to contribute to stomatal movements. Patch clamp studies have been pursued on guard cell protoplasts of Vicia faba to analyze the effects of physiological cytosolic free Ca2+ concentrations, Ca2+ buffers and GTP-binding protein modulators on inward-rectifying K+ channels. Ca2+ inhibition of inward-rectifying K+ currents depended strongly on the concentration and effectiveness of the Ca2+ buffer used, indicating a large Ca2+ buffering capacity and pH increases in guard calls. When the cytosolic Ca2+ concentration was buffered to micromolar levels using BAPTA, inward-rectifying K+ channels were strongly inhibited. However, when EGTA was used as the Ca2+ buffer, much less inhibition was observed, even when pipette solutions contained 1 µM free Ca2+. Under the imposed conditions, GTPγS did not significantly inhibit inward-rectifying K+ channel currents when cytosolic Ca2+ was buffered to low levels or when using EGTA as the Ca2+ buffer. Furthermore, GDPβS reduced inward K+ currents at low cytosolic Ca2+, indicating a novel mode of inward K+ channel regulation by G-protein modulators, which is opposite in effect to that from previous reports. On the other hand, when Ca2+ was effectively elevated in the cytosol to 1 µM using BAPTA, GTPγS produced an additional inhibition of the inward-rectifying K+ channel currents in a population of cells, indicating possible Ca2+-dependent action of GTP-binding protein modulators in K+ channel inhibition. Assays of stomatal opening show that 90% inhibition of inward K+ currents does not prohibit, but slows, stomatal opening and reduces stomatal apertures by only 34% after 2 h light exposure. These data suggest that limited K+ channel down-regulation alone may not be rate-limiting, and it is proposed that the concerted action of proton-pump inhibition and additional anion channel activation is likely required for inhibition of stomatal opening. Furthermore, G-protein modulators regulate inward K+ channels in a more complex and limited, possibly Ca2+-dependent, manner than previously proposed.  相似文献   

6.
Neuraminidase-treated human erythrocytes, but not untreated erythrocytes, were agglutinated by concanavalin A. The degree of concanavalin A agglutinability was not directly related to sialic acid removal by neuraminidase. While maximal sialic acid release was obtained with 5 units neuraminidase/2 × 109 erythrocytes, maximal concanavalin A agglutination was only obtained after exposure to 20 units neuraminidase. Binding of 3H-concanavalin A by erythrocytes was 10-fold higher with rabbit compared to human red cells.Neuraminidase treatment of human erythrocytes caused a relative increase in 3H-concanavalin binding, but the absolute amount was still 10-fold less than that bound to rabbit erythrocytes. Specific adherence of neuraminidase to Con A-Agarose could not be demonstrated. There was no evidence for contamination of the neuraminidase preparation with proteases using a sensitive assay. These studies suggest that neuraminidase adsorbs to erythrocyte membranes and leads to concanavalin A agglutination of human erythrocytes by a mechanism other than removal of sialic acid.  相似文献   

7.
The effect of potential-dependent potassium uptake at 0–120 mM K+ on matrix Ca2+ accumulation in rat brain mitochondria was studied. An increase in oxygen consumption and proton extrusion rates as well as increase in matrix pH with increase in K+ content in the medium was observed due to K+ uptake into the mitochondria. The accumulation of Ca2+ was shown to depend on K+ concentration in the medium. At K+ concentration ?30 mM, Ca2+ uptake is decreased due to K+-induced membrane depolarization, whereas at higher K+ concentrations, up to 120 mM K+, Ca2+ uptake is increased in spite of membrane depolarization caused by matrix alkalization due to K+ uptake. Mitochondrial K ATP + -channel blockers (glibenclamide and 5-hydroxydecanoic acid) diminish K+ uptake as well as K+-induced depolarization and matrix alkalization, which results in attenuation of the potassium-induced effects on matrix Ca2+ uptake, i.e. increase in Ca2+ uptake at low K+ content in the medium due to the smaller membrane depolarization and decrease in Ca2+ uptake at high potassium concentrations because of restricted rise in matrix pH. The results show the importance of potential-dependent potassium uptake, and especially the K ATP + channel, in the regulation of calcium accumulation in rat brain mitochondria.  相似文献   

8.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. However, many of their properties and their similarities to K+ channels found in animal cells had not previously been established. The channels open when the cells are depolarized in solutions with a high K+/Ca2+ ratio. In this work, the pharmacology of a previously identified plant K+ channel was examined. This survey showed that the channels have many properties which are similar to those of high-conductance Ca2+-activated K+ channels (highG K+(Ca2+)). K+ currents inChara were reduced by TEA+, Na+, Cs+, Ba2+, decamethonium and quinine, all inhibitors of, among other things, highG K+(Ca2+) channels. Tetracaine also inhibited K+ currentsChara, but its effect on most types of K+ channels in animal tissues is unknown. The currents were not inhibited by 4-aminopyridine (4AP), caffeine, tolbutamide, dendrotoxin, apamin or tubocurarine, which do not inhibit highG K+(Ca2+) channels, but affect other classes of K+ channels. The channels were locked open by 4AP, in a remarkably similar manner to that reported for K+(Ca2+) channels of a molluscan neuron. No evidence for the role of the inositol cycle in channel behavior was found, but its role in K+ channel control in animal cells is obscure. Potassium conductance was slightly decreased upon reduction of cytoplasmic ATP levels by cyanide + salicylhydroxamic acid (SHAM), consistent with channel control by phosphorylation. The anomalously strong voltage dependence of blockade by some ions (e.g. Cs+) is consistent with the channels being multiion pores. However, the channels also demonstrate some differences from the highG K+(Ca2+) channels found in animal tissues. The venom of the scorption,Leiurus quinquestriatus (LQV), and a protein component, charybdotoxin (CTX), an apparently specific inhibitor of highG K+(Ca2+) channels in various animal tissues, had no effect on the K+ channels in theChara plasmalemma. Als,, pinacidil, an antihypertensive drug which may increase highG K+(Ca2+) channel activity had no effect on the channels inChara. Although the described properties of theChara K+ channels are most similar to those of high conductance K+(Ca2+) in animal cells, the effects of CTX and pinacidil are notably different; the channels are clearly of a different structure to those found in animal cells, but are possibly related.  相似文献   

9.
The capacity of excised internode sections of pea to grow and secrete protons in response to indoleacetic acid (IAA) and Ca2+ and K+ treatments was examined. By incubating unpeeled and unabraded sections in rapidly flowing solutions, it was shown that acidification of the external medium in the presence or absence of IAA is dependent on the presence of Ca2+ and K+. Similar results were obtained when unpeeled and unabraded sections were incubated in dishes with shaking. When peeled or abraded sections were incubated with shaking in IAA, H+ release was also dependent on the presence of Ca2+ and K+. The release of H+ from sections incubated in Ca2+ and K+ is not caused by displacement of H+ from binding sites in the cell wall. Rather, the release of protons from sections is temperature dependent, and it is concluded that this is a metabolically linked process. Although Ca2+ and K+ are essential for the release of H+ from isolated stem sections of peas, these cations do not influence elongation. Despite the large increase in proton release induced by Ca2+ and K+ either in the presence or absence of auxin, growth in the presence of these ions was never greater than it was in their absence. Furthermore, cations do not affect the neutral sugar or uronic acid composition of the solution which can be centrifuged from isolated sections. As is the case for growth, an increase in the neutral sugar and uronide composition of the cell wall solution is dependent only on IAA. It is concluded that IAA-induced growth of pea stem sections is independent of the secretion of protons.  相似文献   

10.
Our previous studies suggested the cross talk of nitric oxide (NO) with Ca2+ in regulating stomatal movement. However, its mechanism of action is not well defined in plant roots. In this study, sodium nitroprusside (SNP, a NO donor) showed an inhibitory effect on the growth of wheat seedling roots in a dose-dependent manner, which was alleviated through reducing extracellular Ca2+ concentration. Analyzing the content of Ca2+ and K+ in wheat seedling roots showed that SNP significantly promoted Ca2+ accumulation and inhibited K+ accumulation at a higher concentration of extracellular Ca2+, but SNP promoted K+ accumulation in the absence of extracellular Ca2+. To gain further insights into Ca2+ function in the NO-regulated growth of wheat seedling roots, we conducted the patch-clamped protoplasts of wheat seedling roots in a whole cell configuration. In the absence of extracellular Ca2+, NO activated inward-rectifying K+ channels, but had little effects on outward-rectifying K+ channels. In the presence of 2 mmol L−1 CaCl2 in the bath solution, NO significantly activated outward-rectifying K+ channels, which was partially alleviated by LaCl3 (a Ca2+ channel inhibitor). In contrast, 2 mmol L−1 CaCl2 alone had little effect on inward or outward-rectifying K+ channels. Thus, NO inhibits the growth of wheat seedling roots likely by promoting extracellular Ca2+ influx excessively. The increase in cytosolic Ca2+ appears to inhibit K+ influx, promotes K+ outflux across the plasma membrane, and finally reduces the content of K+ in root cells.  相似文献   

11.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

12.
The Ca2+-dependent K+ efflux from rat submandibular gland was studied using a K+-sensitive electrode. A K+ efflux was induced by either adrenalin or by using the divalent cation ionophore A23187 plus added Ca2+ to bypass the receptor mechanism. Trifluoperazine, which was used to investigate the role of calmodulin, was found to block the adrenalin-induced K+ efflux but not the A23187/Ca2+-induced K+ efflux. The adrenalin-induced K+ efflux was abolished by quinidine and the A23187/Ca2+-induced K+ efflux was significantly reduced by quinidine. In other experiments, the presence of indomethacin did not inhibit the adrenalin-induced K+ efflux, and exogenously added arachidonic acid did not induce a K+ efflux. It is concluded that neither prostaglandin synthesis, nor a cytosolic Ca2+-calmodulin complex is involved in the agonist-induced K+ efflux from rat submandibular gland. A similarity between the Ca2+-dependent K+ efflux mechanism of erythrocyte ghosts and submandibular tissue is indicated by their common response to quinidine.  相似文献   

13.
The effect of taurine on the ATP-dependent mitochondrial swelling that characterizes the activity of mitochondrial ATP-dependent K+ channel and the formation of Ca2+-dependent pores, different in sensitivity to cyclosporin A, has been studied in rat liver mitochondria. It has been shown that taurine in micromolar concentrations (0.5–125 μM) stimulates the energy-dependent swelling of mitochondria. Taurine in physiological concentrations (0.5–20 mM) has no effect on the ATP-dependent swelling and the formation of cyclosporin A-insensitive Pal/Ca2+-activated pore in mitochondria. Taurine in these concentrations increased the rate of cyclosporin A-sensitive swelling of mitochondria induced by Ca2+ and Pi and reduced the Ca2+ capacity of mitochondria. The different effects of physiological taurine concentrations on the ATP-dependent transport of K+ and Ca2+ ions in mitochondrial membranes as compared with cell membranes are discussed.  相似文献   

14.
Purification and properties of a neuraminidase from Streptococcus K 6646   总被引:2,自引:0,他引:2  
A neuraminidase was purified from the culture filtrate of Streptococcus 6646 (group K) by means of ammonium sulfate fractionation and successive column chromatographies on N-(p-aminophenyl)oxamic acid-substituted Sepharose derivative and p-aminophenyl-2-acetamido-2-deoxy-1-thio-β-d-glucopyranoside-substituted Sepharose derivative. The former adsorbent was found to bind a β-galactosidase and a β-N-acetylhexosaminidase in addition to the neuraminidase, and the latter adsorbent bound the β-galactosidase in addition to the β-d-N-acetylhexosaminidase. These adsorbents effectively eliminated the contaminating glycosidase activities and a 1,500-fold purification of the neuraminidase was achieved by this procedure.The neuraminidase thus purified was homogeneous by electrophoresis on polyacrylamide gel, and its molecular weight was estimated to be 110,000 by gel filtration on Biogel P-200. The activity of the purified neuraminidase was slightly stimulated by Ca2+, Mg2+, Mn2+, and Co2+, and strongly inhibited by heavy metals. The specificity of the purified neuraminidase was almost the same with Vibrio cholerae or Clostridium perfringens neuraminidase. It completely hydrolyzes sialic acid residues in neuraminyl lactose and porcine thyroglobulin, but it liberates only 50% of sialic acid residues from porcine submaxillary mucin and ganglioside GD1a.  相似文献   

15.
Summary 1. The ability of various divalent metal ions to substitute for Ca2+ in activating distinct types of Ca2+-dependent K+ [K+(Ca2+] channels has been investigated in excised, inside-out membrane patches of human erthrocytes and of clonal N1E-115 mouse neuroblastoma cells using the patch clamp technique. The effects of the various metal ions have been compared and related to the effects of Ca2+.2. At concentrations between 1 and 100 µM Pb2+, Cd2+ and Co2+ activate intermediate conductance K+(Ca2+) channels in erythrocytes and large conductance K+(Ca2+) channels in neuroblastoma cells. Pb2+ and Co2+, but not Cd2+, activate small conductance K+(Ca2+) channels in neuroblastoma cells. Mg2+ and Fe2+ do not activate any of the K+(Ca2+) channels.3. Rank orders of the potencies for K+(Ca2+) activation are Pb2+, Cd2+>Ca2+, Co2+>>Mg2+, Fe2+ for the intermediate erythrocyte K+(Ca2+) channel, and Pb2+, Cd2+>Ca2+>Co2+>>Mg2+, Fe2+ for the small, and Pb2+>Ca2+>Co2+>>Cd2+, Mg2+, Fe2+ for the large K+(Ca2+) channel in neuroblastoma cells.4. At high concentrations Pb2+, Cd2+, and Co2+ block K+(Ca2+) channels in erythrocytes by reducing the opening frequency of the channels and by reducing the single channel amplitude. The potency orders of the two blocking effects are Pb2+>Cd2+, Co2+>>Ca2+, and Cd2+>Pb2+, Co2+>>Ca2+, respectively, and are distinct from the potency orders for activation.5. It is concluded that the different subtypes of K+(Ca2+) channels contain distinct regulatory sites involved in metal ion binding and channel opening. The K+(Ca2+) channel in erythrocytes appears to contain additional metal ion interaction sites involved in channel block.  相似文献   

16.
Ca2+ binding to fragmented sarcolemma isolated from canine heart was measured by an ultracentrifugation technique. Two classes of binding site with dissociation constants of 2.0 · 10?5 and 1.2 · 10?3 M were identified. The capacities of the high- and low-affinity sites were 15 and 452 nmol/mg, respectively. These sites were not affected by treatment with neuraminidase. The effects of various cations and drugs on Ca2+ binding were studied. All cations tested inhibited Ca2+ binding with the following order of potency: trivalent > divalent > monovalent cations. The order of potency for the monovalent ions was: Na+ > K+ > Li+ ? Cs+ and for the divalent and trivalent ions: La3+ ? Mn2+ > Sr2+ ? Ba2+ > Mg2+. 1 · 10?3 M caffeine and 1 · 10?8 M ouabain increased the capacity of the low-affinity sites to 1531 and 837 nmol/mg, respectively. 1 · 10?7 M verapamil, acidosis (pH 6.4), 1?10?5 M Mn2+ and 1 · 10?4 M ouabain depressed the capacity of the low-affinity sites to a range of 154–291 nmol/mg. The dissociation constants of the high- and low-affinity sites and the capacity of the high-affinity sites were not affected by these agents.  相似文献   

17.
When human red cells are incubated at 37°C with the artificial electron donor system ascorbate + phenazine methosulphate the fluxes of Rb+ (K+) through the cell membrane are increased. The effect of this donor system is much stronger in energy-depleted than in normal cells. The same effects are produced by HS-glutathione, NADH or NADPH loaded into resealed ghosts, but these electron donors were ineffective when added to the incubation medium. The Rb+ (K+) fluxes induced by electron donors resemble closely those induced by an increase of intracellular Ca2+ (Gardos effect). The electron donors require the presence of intracellular Ca2+ to be effective, but at levels that do not stimulate by themselves the fluxes of K+. Flavoenzyme inhibitors (atebrin and chlorpromazine), oligomycin and quinine prevented the effects of both electron donors and Ca2+ alone; antimycin, uncouplers and ethacrynic acid inhibited them partially; ouabain, furosemide, and rotenone had no effect.The results could be explained if the effect of electron donors is to bring about a change in the redox state of some membrane component(s) that makes intracellular Ca2+ more effective to elicit rapid K+ movements. Plasma membrane oxidoreductase activities could be engaged in this change.  相似文献   

18.
Experiments on the effects of varying concentrations of Ca2+ on the Mg2+ + Na+-dependent ATPase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase showed that Ca2+ was a partial inhibitor of this activity. When Ca2+ was added to the reaction mixture instead of Mg2+, there was a ouabain-sensitive Ca2+ + Na+-dependent ATPase activity the maximal velocity of which was 30 to 50% of that of Mg2+ + Na+-dependent activity. The apparent affinities of the enzyme for Ca2+ and CaATP seemed to be higher than those for Mg2+ and MgATP. Addition of K+, along with Ca2+ and Na+, increased the maximal velocity and the concentration of ATP required to obtain half-maximal velocity. The maximal velocity of the ouabain-sensitive Ca2+ + Na+ + K+-dependent ATPase was about two orders of magnitude smaller than that of Mg2+ + Na+ + K+-dependent activity. In agreement with previous observations, it was shown that in the presence of Ca2+, Na+, and ATP, an acid-stable phosphoenzyme was formed that was sensitive to either ADP or K+. The enzyme also exhibited a Ca2+ + Na+-dependent ADP-ATP exchange activity. Neither the inhibitory effects of Ca2+ on Mg2+-dependent activities, nor the Ca2+-dependent activities were influenced by the addition of calmodulin. Because of the presence of small quantities of endogenous Mg2+ in all reaction mixtures, it could not be determined whether the apparent Ca2+-dependent activities involved enzyme-substrate complexes containing Ca2+ as the divalent cation or both Ca2+ and Mg2+.  相似文献   

19.
When red cells are starved or incubated in the presence of metabolic poisons, with or without substrates, a large increase in K+ permeability is observed which depends on the presence of Ca2+ in the medium. The production or removal of a metabolite which controls the K+ permeability has been proposed to explain these effects. In the present experiments, a parallelism is found to exist between the rate of ATP depletion and the increase in Ca2+ uptake and K+ loss when red cells are depleted by different methods. The results support the view that the intracellular concentration of ATP may be the main factor on which the rate of Ca2+ uptake and the subsequent increase in K+ permeability depend.  相似文献   

20.
Using bovine mucin and isolated human myelin as source of sialic acid, we demonstrate the presence of neuraminidase activities in the growth media of pathogenic, but not nonpathogenic, Naegleria sp. and in sonicates of rabbit alveolar macrophages. Neuraminidase activity was maximal at pH 4.5 and 5.0, and the specific activity for sialic release was up to 13-fold greater with mucin that with human myelin. Activity in the growth media from cultures of pathogenic Naegleria fowleri was ion-independent, while that of macrophage sonicates required divalent cation; optimal activity was noted with 2.5 mM Zn2, while Mg2+ and Mn2+ supported activity to a lesser extent. Such acid-active neuraminidases may contribute to the reported glycolipid alterations associated with the demyelinating diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号