首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carposporogenesis in Caloglossa leprieurii is divided into three cytological stages. At stage I, the young spores have few plastids and little starch. Abundant dictyosomes secrete a gelatinous wall layer in scale-like units. At stage II, dictyosomes produce a second fibrillar wall component in addition to the gelatinous constituent. Large fibrillar vesicles accumulate in the cytoplasm. Production of gelatinous material decreases in this stage. By stage III, starch grains and fully developed plastids are abundant. Rough endoplasmic reticulum occupies much of the peripheral cytoplasm. A dense, granular proteinaceous component appears in the wall in association with the fibrillar layer. Arrays of randomly oriented tubules are scattered in the cytoplasm. The mature carpospore is surrounded by an outer gelatinous wall layer and an inner fibrillar layer. Few dictyosomes persist in the mature spore. Carposporogenesis in Caloglossa is compared with that in other red algae.  相似文献   

2.
Embryos of the brown alga Fucus vesiculosas L. were grown as populations in glass petri dishes in seawater at 15 C in continuous low-intensity unilateral fluorescent illumination for periods up to 2 weeks. A quantitative estimate of increase in nuclear number was made from acetocarmine squash preparations of samples taken at 12-or-24 hr intervals. Over the period of 2-6 days embryos showed a doubling time of about 12-18 hr. Under normal seawater culture conditions each embryo formed a single rhizoid. When grown in seawater supplemented with sugar concentrations above 0.4 m , Fucus embryos developed as multicellular spherical embryos lacking rhizoids. In 0.6 m sucrose-seawater, 97% of the embryos were apolar at 2 days; only 37% were apolar at 4 days, many having recovered from the sucrose inhibition. Some embryos remained apolar after growth in 0.6 m sucrose for 2 weeks. Nuclear counts showed that sucrose-seawater markedly inhibited the rate of cell division. Other sugars including D-glucose, D-fructose, D-galactose and the sugar alcohol D-mannitol were also effective. When apolar embryos grown in sucrose-seawater were returned to seawater, embryo growth resumed at the normal seawater rate, judged from nuclear counts. Such embryos formed multiple rhizoids, varying from two to eight rhizoids per embryo, which developed on the embryo quadrant or half away from the unilateral light. Each of the multiple rhizoids originated from a single small cell in the periphery of the multicellular spherica embryo. Thus the rhizoid-forming stimulus apparently had been subdivided among a number of the cells of the apolar embryos. The implications of this finding are discussed. Attempts to produce multiple rhizoids by treatment of embryos with indoleacetic acid or 2,4-dichlorophen-oxyacetic acid failed. However, embryos treated with 10−4 M or 5 × 10−5 m 2,3,5-triiodobenzoic acid formed 40 and 30% multiple rhizoids, respectively, suggesting that some chemical, perhaps hormonal, mechanism is involved in polarization and rhizoid initiation in Fucus embryogenesis.  相似文献   

3.
Summary An electron microscopic analysis of germinating cysts ofPhytophthora palmivora involving freeze-etching, thin sectioning, and replica techniques reveals that both cyst and hyphal wall comprise a two-phase system with a fibrillar and an amorphous component. The cyst wall is fibrillar throughout with the fibrils tightly interwoven and embedded in an amorphous matrix on the internal side of the wall. The hyphal wall consists of a fibrillar inner layer with the fibrils lightly covered by some amorphous material and an amorphous outer layer devoid of any fibrillar material. Both cyst and germ tube walls are wholly or partially covered by a fluffy coat of variable thickness. In the zone of germ tube emergence cyst wall and germ tube wall overlap and are tightly apposed. Thus, the germ tube wall is not a simple extension of the cyst wall but a new structural entity separated from the cyst wall by a thin line of demarcation.  相似文献   

4.
A single-layered disc of peripheral pronged cells and central prongless cells impart the typical gear shape to colonies of Pediastrum, while the walls of each cell have a characteristic reticulate triangular pattern. The two-layered wall forms in the cells during colony formation following zoospore aggregation and adhesion. The uniformly thin outer layer reflects contours resulting from differential thickening in the reticulate pattern of the inner, thicker, more fibrillar and granular wall layer. The reticulate pattern thus imparted to the outer wall layer persists in empty zoosporangia following the release of zoospores. Columns of electron-dense material extend through the outer wall layer except at the ridges and centers of the reticulum. Following mitosis and cleavage, the resulting zoospores are extruded within a vesicle membrane consisting of the inner wall layer. Separation of this membrane from the parent cell occurs in material of the inner layer adjacent to the outer wall. Vesicles containing swarming zoospores also contain a granular material which appears to become associated with the aggregating and adhering cells of new colonies. Microtubules occur in zoospores prior to adherence but are absent during wall deposition.  相似文献   

5.
The mature female conceptacle of Sargassum horneri (Turner) C. Agardh has an ostiole filled with a gelatinous plug. The oogonium in the conceptacle has cell walls that can be differentiated into a dense outer and a less dense inner microfibrillar layer. Just prior to egg release, stalk material is produced inside the outer layer and the inner layer disappears. At this stage the gelatinous plug is extruded and mucilage is released through the ostiole. The released eggs are retained on the receptacle by the stalk and are surrounded by a large amount of the mucilage. Three-celled germlings form a primary wall with a polylamellated structure of microfibril layers. In multicellular germlings that have differentiated into thallus and rhizoids, the peripheral thallus cells have an outer cell wall consisting of a microfibril layer under the primary wall, while the cell wall of the rhizoid tip has an amorphous structure. The germlings are released from the stalk and become attached to the substratum by an adhesive substance secreted from rhizoidal cells.  相似文献   

6.
Hyphae and ascospores of Eremascus fertilis and E. albus were studied in ultrathin sections. The lateral wall of the hyphae had a thick electron-light inner layer and a thin dark outer layer. The septa had a simple central pore with or without a plug, and there were Woronin bodies in the vicinity. The wall of the ascospores of E. fertilis showed a thick light inner layer and a thin dark outer layer. In the wall of the spores of E. albus a dark fibrillar layer was present between the light inner layer and the dark outer layer. The spores of this species germinated with a tube the wall of which was continuous with a newly formed layer inside the spore wall.This investigation was supported by the Netherlands Organization for the Advancement of Pure Research (Z. W. O.)  相似文献   

7.
THE ULTRASTRUCTURE OF LICHENS. I. A GENERAL SURVEY   总被引:1,自引:0,他引:1  
The fine structure of 10 lichens was examined. A comparison was made of the storage products of the algal symbiont (Trebouxia) in situ in the desiccated and hydrated states of the lichens. All the Trebouxia phycobionts, with the exception of that in Usnea strigosa, had lipid-containing globules in the pyrenoid. The globules were present in both the hydrated and desiccated conditions. Trebouxia in the hydrated condition contained starch granules in the chloroplast as well as the lipid-containing globules in the pyrenoid. The cell wall of Trebouxia consists of an outer electron-dense layer and an inner electron-light layer. Fungal haustoria (in Lecanora rubina) rupture the outer layer of the algal cell wall and invaginate the inner layer. A thick polysaccharide fibrillar material surrounds the fungal cells. Many bacteria were observed within this material. Septa and lomasomes are described. Ellipsoidal bodies, which appear to be an integral and unique part of the lichen fungal ultrastructure, were observed associated with membrane profiles.  相似文献   

8.
The cell wall of the Nitella rhizoid was stripped to make wedges of various thicknesses. Polarizing and interference microscopes were used to examine the post-deposition orientation of wall microfibrils. The fibrils appeared to maintain alignment after they were deposited. Since during growth the rhizoid wall elements are static in the cylindrical part or extend isotropically in the dome (Chen, 1973), these observations provide indirect evidence that the fibrillar reorientation observed in the Nitella internode is due to a passive reorientation during the predominant longitudinal cell elongation (Gertel and Green, 1977). The static microfibrils of the secondary wall of rhizoid, however, reoriented under the influence of colchicine, the alignment becoming almost random after 48 hrs. The disturbance of alignment started in the region adjacent to the plasma membrane, increasing in thickness with prolonged treatment.  相似文献   

9.
Changes in the appearance and location of fucoidin in the cell walls of Fucus embryos were related to embryo development. Fucoidin was not present in the cell wall until 10–14 hr after fertilization, when the embryos began to incorporate fucoidin preferentially into a localized area of the wall. At this time the site of rhizoid initiation was determined; that is, the embryos had undergone axis commitment. Germination of the single-celled embryo occurred between 12 and 16 hr, after fertilization, with all cell walls from germinated embryos showing fucoidin localization at the rhizoid end of the cell. The percentage of embryos with localized fucoidin at the time of axis fixation equaled the percentage of embryos that subsequently germinated. Culturing the embryos in sea water plus 0.8 M sucrose prevented the outgrowth of the rhizoid, but not the localization of fucoidin in the wall or axis commitment. Cycloheximide, nitroprusside, cytochalasin B, sulfate-free sea water, high levels of Ca2+, and a breakdown product of TIBA all prevented rhizoid growth and the specific localization of fucoidin. In addition, axis commitment could not be demonstrated in the presence of these inhibitors. DTNB, PCMBS, TIBA, HgCl2, Mg2+ were ineffective as reversible inhibitors of rhizoid initiation. The authors propose that the fixation of axis commitment is accompanied by localized changes in the cell wall involving the incorporation of fucoidin as a structural component of the wall.  相似文献   

10.
Formation of the cuticle from components of the secretory cavity and subcuticular wall was studied by transmission electron microscopy of glandular trichomes of Cannabis prepared by high pressure cryofixation-cryosubstitution. Secretory vesicles in the secretory cavity resembled those localized in the subcuticular wall as well as the vesicle-related material associated with the irregular inner surface of the cuticle and appeared to provide precursors for thickening of the cuticle. Some contiguous vesicles in the secretory cavity and subcuticular wall lacked a surface feature at their point of contact, supporting an interpretation of vesicle fusion. Fibrillar matrix from the secretory cavity contributed fibrillar matrix to the subcuticular wall, and persisted as residual fibrillar matrix associated with secretory materials coalesced to the thickened inner surface of the cuticle. Elongated fibrils arranged in uniformly spaced parallel pairs contributed to the organization of fibrillar matrix in the subcuticular wall. Striae were evident in the outer portion of the cuticle, and appeared to represent sites of degraded residual fibrillar matrix associated with secretory materials coalesced to the inner cuticular surface. This study supports an interpretation that contents of secretory vesicles from the secretory cavity contribute to formation of glandular cuticle.  相似文献   

11.
Klaus Schröter 《Planta》1978,140(1):69-73
Five hours before germination the zygotes of Pelvetia fastigiata adhere to their substrate. A jelly layer covers the entire cell but most of the transparent jelly, artificially outlined by a layer of resin beads, is secreted at the prospective rhizoid pole. If the direction of the growth-orienting light is shifted after the asymmetrical secretion has already started, the direction of the secretion is also shifted. The polarization axis can be predicted by the site of the intensive jelly secretion. The germination of Fucus vesiculosus and F. spiralis is also preceded by an intensive asymmetrical jelly secretion. However, at the rhizoid pole of F. serratus the jelly secretion does not increase until the germinating zygote becomes pear-shaped. Fucoid zygotes do not adhere, neither do they have a jelly cover as long as they develop in sulfate-free sea water.Abbreviations a.f. after fertilization  相似文献   

12.
Ultrastructural studies on tetraspore formation in Levringiella gardneri revealed that 3 stages may be recognized during their formation. The youngest stage consists of a uninucleate tetraspore mother cell with synaptonemal complexes present during early prophase of meiosis I. Mitochondria are aggregated around the nucleus, dictyosome activity is low, and chloroplasts occur in the peripheral cytoplasm. A 4-nucleate tetraspore mother cell is formed prior to tetrahedral cell cleavage, and an increase in the number of chloroplasts and mitochondria occurs. Small straight-profiled dictyosomes secrete vesicles into larger fibrous vesicles or contribute material to the developing tetraspore wall. During the second stage of tetraspore formation, striated vesicles form within endoplasmic reticulum, semicircular profiled dictyosomes secrete vesicles for fibrous vesicles or wall material, and starch formation increases. The final stage is characterized by the disappearance of striated vesicles, presence of straight, large dictyosomes which secrete cored vesicles, and an abundance of starch grains. Cleavage is usually complete at this stage and the tetraspore wall consists of a narrow outer layer of fibrillar material and an inner, electron transparent layer. These spores are surrounded by a tetrasporangial wall which was the original wall surrounding the tetraspore mother cell.  相似文献   

13.
When Leuconostoc mesenteroides NCDO 523 was grown in MRS browth, electron microscopy of cells fixed in the presence of ruthenium red showed that the cell wall was covered with a thin layer of filamentous material. When MRS-grown cells were resuspended in the same medium supplemented with 3.6% sucrose, this surface coat doubled in thickness and a number of radial thickenings appeared within it. After 3 h the filamentous component of the surface coat had disappeared leaving only the radial projections. The progressive accumulation of polymer to produce a capsule visible by light microscopy was observed in only about 20% of the population. In this minority of cells, a dense globular dextran composed of fibrillar and particulate elements was always produced in the initial stages of synthesis. After 18 h, the dextran capsule was generally composed of an inner globular and outer fibrillar layer. It appeared that the outer layer was derived from the globular dextran of the capsule by a process of dispersion.  相似文献   

14.
SYNOPSIS. A procedure is described for the isolation of cyst wall of Schizopyrenus russelli free of cytoplasmic material. It has 27.3% protein, 37.5% carbohydrate (of which 13.1% is cellulose), and 15.1% lipids. Sialic acid is absent. It has a relatively electrondense inner thick layer and a less electron-dense outer thin layer. The space between the 2 layers is 25 nm in younger cysts and 2.5 μ in fully mature cysts. This space is filled with a fibrillar spongy material likely to be cellulose.  相似文献   

15.
Zygotes of the fucalean alga Hormosira banksii initiate rhizoidal outgrowths in stationary culture 15 hr after fertilization and are then recognizably polar. By 24 hr most embryos are two-celled, and a few are four-celled. In a dark-grown population orientation of the developmental axis, as indicated by the direction of the rhizoidal outgrowth, was random around the vertical axis. In a unilaterally illuminated population the rhizoid usually emerged on the shaded side. Zygotes grown in light or darkness in shake culture, where they were continuously reoriented, usually developed as polar embryos, indicating that gradients of environmental factors are not required for initiation of polar growth. Some apolar embryos developed in stationary and shake cultures, but they were most frequent in dark shake cultures.  相似文献   

16.
P. simplex is a single-pronged, fenestrated species of Pediastrum. Comparison is made in regard to cell differentiation and structure with P. boryanum, a 2-pronged, unfenestrated species, with emphasis on the origin of cell wall pattern and the regulation of cell shape. The characteristic wall pattern is initiated with the deposition of plaques of wall material of the outer wall layer when zoospores have assembled in the colony. The pattern is postulated to be templated in the plasma membrane. The inner, thicker wall layer is fibrillar and deposited from vesicles derived from the golgi apparatus. In P. simplex 2–4 dictyosomes are present in contrast to the single dictyosome of P. boryanum. The dictyosomes lie at the concave inner face of the nucleus. Blebs of its ribosome-free outer membrane are contributed to the forming face of the golgi apparatus. Parallel microtubules underlie the plasma membrane in the aggregating zoospores and disappear after the initiation of wall formation. The possible role of microtubules and other organelles in the determination of cell shape in Pediastrum is discussed.  相似文献   

17.
The attachment of the psammophytic alga Caulerpa mexicana Sond. ex Kütz., a coenocytic green alga, to crushed CaCO3 particles was examined utilizing the scanning electron microscope and fluorescently tagged antivitronectin antibodies. Plants attached to the substrate through morphologically variable tubular rhizoidal extensions that grew from the stolon. In this study, we describe two means of attachment: (i) the rhizoid attachment to limestone gravel by thigmoconstriction, where tubular extensions of the rhizoid wrapped tightly around the substrate and changed morphology to fit tightly into crevices in the limestone, and (ii) through adhesion pads that formed in contact with the limestone granules. Flattened rhizoidal pads were observed to secrete a fibrillar material that contained vitronectin‐like proteins identified through immunolocialization and that facilitated binding of the rhizoid to the substrate.  相似文献   

18.
A study has been made of some chemical and ultrastructural changes that occur in the hyphal, arthrospore and sporangiospore walls ofMucor ramannianus during lysis by a soil streptomycete.Arthrospore and hyphal walls, which were shown to contain chitin, chitosan, other polysaccharides and phosphate (principally as polyphosphate), were lysed by culture fluid of the streptomycete after this organism had been grown on the same material. Alcohol-insoluble material found in the supernatants of the incubation mixtures gave on hydrolysis glucosamine, galactose, mannose and fucose. No laminarinase activity was detected in these culture fluids. Culture fluids of the streptomycete after growth on chitin and chitosan were also found to lyse the walls of arthrospores and hyphae.Despite the chemical similarities the walls were very different in thin section.A major component in the sporangiospore walls was glucan and an active laminarinase was shown to be present in the culture fluids of the streptomycete after growth on them. Further, ultrathin sections showed that an inner fibrillar layer of the sporangiospore wall was lysed leaving an outer electron-dense layer.  相似文献   

19.
Cellulase reaction product was localized cytochemically at the ultrastructural level in the cell wall of disc cells, the secretory cavity and in the subcuticular wall of glands inCannabis. Cellulase reaction product was evident in the less dense region of the disc cell wall prior to secretory cavity formation. Reactivity in this region was associated with separation of an outer zone, forming the subcuticular wall, from the inner wall zone adjacent to the plasma membrane of the disc cells. Reaction product was associated with the disc cell wall and fibrillar matrix extending from it into the secretory cavity. Reactivity remained evident over the subcuticular wall throughout enlargement of the secretory cavity. Reaction product also was present over fibrillar matrix in the secretory cavity associated with both the inner wall and the subcuticular wall. The distribution of cellulase reaction product supports an interpretation that cellulase is involved in formation of the secretory cavity and subsequent redistribution of wall products to form the subcuticular wall during development of the secretory cavity.  相似文献   

20.
Cells of Pseudomonas phaseolicola were observed entrapped against plant cell walls in both susceptible (Red Kidney) and resistant (Red Mexican) cultivars of French bean (Phaseolus vulgaris). After staining of samples with ruthenium red for electron microscopy pectic polysaccharide within plant cell walls became particularly well contrasted as did fibrillar material connecting bacteria to the plant cell walls. In places this fibrillar material appeared to emanate from the pectic polysaccharide in the plant cell wall, and the plant cell wall surface was eroded at such points. Ruthenium red also stains acidic, bacterial extracellular polysaccharide (EPS) and some of the fibrillar material in intercellular spaces is probably from this source. It is possible that bacteria become attached through an interaction between EPS and Pectic polysaccharide in plant cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号