首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Autophagy》2013,9(1):166-182
The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activation is unclear. We set out to determine how autophagy might influence this process, using the bacterium Pseudomonas aeruginosa, which activates the NLRC4 inflammasome via its T3SS. Infection resulted in T3SS-dependent mitochondrial damage with increased production of reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting mitochondrial reactive oxygen release or degrading intracellular mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, macrophages lacking mitochondria failed to activate NLRC4 following infection. Removal of damaged mitochondria by autophagy significantly attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound specifically to NLRC4 immunoprecipitates and transfection of mitochondrial DNA directly activated the NLRC4 inflammasome; oxidation of the DNA enhanced this effect. Manipulation of autophagy altered the degree of inflammasome activation and inflammation in an in vivo model of P. aeruginosa infection. Our results reveal a novel mechanism contributing to NLRC4 activation by P. aeruginosa via mitochondrial damage and release of mitochondrial DNA triggered by the bacterial T3SS that is downregulated by autophagy.  相似文献   

2.
The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activation is unclear. We set out to determine how autophagy might influence this process, using the bacterium Pseudomonas aeruginosa, which activates the NLRC4 inflammasome via its T3SS. Infection resulted in T3SS-dependent mitochondrial damage with increased production of reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting mitochondrial reactive oxygen release or degrading intracellular mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, macrophages lacking mitochondria failed to activate NLRC4 following infection. Removal of damaged mitochondria by autophagy significantly attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound specifically to NLRC4 immunoprecipitates and transfection of mitochondrial DNA directly activated the NLRC4 inflammasome; oxidation of the DNA enhanced this effect. Manipulation of autophagy altered the degree of inflammasome activation and inflammation in an in vivo model of P. aeruginosa infection. Our results reveal a novel mechanism contributing to NLRC4 activation by P. aeruginosa via mitochondrial damage and release of mitochondrial DNA triggered by the bacterial T3SS that is downregulated by autophagy.  相似文献   

3.
The maintenance of genomic stability relies on the concerted action of DNA repair and DNA damage signaling pathways. The PIAS (protein inhibitor of activated STAT) family of SUMO (small ubiquitin-like modifier) ligases has been implicated in DNA repair, but whether it plays a role in DNA damage signaling is still unclear. Here, we show that the PIAS3 SUMO ligase is important for activation of the ATR (ataxia telangiectasia and Rad3 related)-regulated DNA damage signaling pathway. PIAS3 is the only member of the PIAS family that is indispensable for ATR activation. In response to different types of DNA damage and replication stress, PIAS3 plays multiple roles in ATR activation. In cells treated with camptothecin (CPT), PIAS3 contributes to formation of DNA double-stranded breaks. In UV (ultraviolet light)- or HU (hydroxyurea)-treated cells, PIAS3 is required for efficient ATR autophosphorylation, one of the earliest events during ATR activation. Although PIAS3 is dispensable for ATRIP (ATR-interacting protein) SUMOylation and the ATR-ATRIP interaction, it is required for maintaining the basal kinase activity of ATR prior to DNA damage. In the absence of PIAS3, ATR fails to display normal kinase activity after DNA damage, which accompanies with reduced phosphorylation of ATR substrates. Together, these results suggest that PIAS3 primes ATR for checkpoint activation by sustaining its basal kinase activity, revealing a new function of the PIAS family in DNA damage signaling.  相似文献   

4.
Alloxan and streptozotocin are widely used to induce experimental diabetes in animals. The mechanism of their action in B cells of the pancreas has been intensively investigated and now is quite well understood. The cytotoxic action of both these diabetogenic agents is mediated by reactive oxygen species, however, the source of their generation is different in the case of alloxan and streptozotocin. Alloxan and the product of its reduction, dialuric acid, establish a redox cycle with the formation of superoxide radicals. These radicals undergo dismutation to hydrogen peroxide. Thereafter highly reactive hydroxyl radicals are formed by the Fenton reaction. The action of reactive oxygen species with a simultaneous massive increase in cytosolic calcium concentration causes rapid destruction of B cells. Streptozotocin enters the B cell via a glucose transporter (GLUT2) and causes alkylation of DNA. DNA damage induces activation of poly ADP-ribosylation, a process that is more important for the diabetogenicity of streptozotocin than DNA damage itself. Poly ADP-ribosylation leads to depletion of cellular NAD+ and ATP. Enhanced ATP dephosphorylation after streptozotocin treatment supplies a substrate for xanthine oxidase resulting in the formation of superoxide radicals. Consequently, hydrogen peroxide and hydroxyl radicals are also generated. Furthermore, streptozotocin liberates toxic amounts of nitric oxide that inhibits aconitase activity and participates in DNA damage. As a result of the streptozotocin action, B cells undergo the destruction by necrosis.  相似文献   

5.
Cisplatin and doxorubicin are widely used anticancer drugs that cause DNA damage, which activates the ATM-Chk2-p53 pathway in cancer cells. This activation leads to cell cycle block or apoptosis, depending on the nature of the DNA damage. In an attempt to enhance the effects of these agents, we inhibited ATM/ATR and Chk2, which are known upstream regulators of p53. The cancer cell lines A2780 and ARN8, bearing the wild-type p53 protein, were used to study changes in p53 activation and trans-activation. Our results suggest that the G1-checkpoint, normally activated by DNA damage, is functionally overcome by the action of kinase inhibitors that sensitize cells to apoptosis. Both inhibitors show these effects, albeit with variable intensity in different cell lines, which is promising for other studies and theoretically for use in clinical practice.  相似文献   

6.
G R Buettner  P L Moseley 《Biochemistry》1992,31(40):9784-9788
The chemotherapeutic agent bleomycin (BLM) is activated by reducing agents to break isolated DNA. Paradoxically, these same reducing agents protect cellular DNA from BLM damage. To resolve this paradox, we have examined the reaction of FeIIIBLM with DNA in the presence of ascorbate. As expected, ascorbate augments FeIIIBLM-induced DNA damage. However, when ascorbate is added to FeIIIBLM prior to exposure to DNA, a redox-inactive BLM is produced in a reaction that generates the ascorbyl radical. This reaction occurs in both ascorbate-supplemented buffer and unsupplemented plasma. In buffered solution, this reaction was found to be stoichiometric; for each mole of BLM present, 6.9 mol of ascorbate was oxidized and 4.7 mol of oxygen was consumed. Iron was found to serve only as a catalyst for the reaction. These data suggest that both activation of BLM and the generation of redox-inactive BLM occur via the same reaction and that BLM-induced DNA damage depends upon BLM reaching DNA prior to its interaction with reducing agents.  相似文献   

7.
The protein kinase ataxia telangiectasia mutated (ATM) is activated when cells are exposed to ionizing radiation (IR). It has been assumed that ATM is specifically activated by the few induced DNA double strand breaks (DSBs), although little direct evidence for this assumption has been presented. DSBs constitute only a few percent of the IR-induced DNA damage, whereas the more frequent single strand DNA breaks (SSBs) and base damage account for over 98% of the overall DNA damage. It is therefore unclear whether DSBs are the only IR-induced DNA lesions that activate ATM. To test directly whether or not DSBs are responsible for ATM activation, we exposed cells to drugs and radiation that produce different numbers of DSBs and SSBs. We determined the resulting ATM activation by measuring the amount of phosphorylated Chk2 and the numbers of SSBs and DSBs in the same cells after short incubation periods. We found a strong correlation between the number of DSBs and ATM activation but no correlation with the number of SSBs. In fact, hydrogen peroxide, which, similar to IR, induces DNA damage through hydroxyl radicals but fails to induce DSBs, did not activate ATM. In contrast, we found that calicheamicin-induced strand breaks activated ATM more efficiently than IR and that ATM activation correlated with the relative DSB induction by these agents. Our data indicate that ATM is specifically activated by IR-induced DSBs, with little or no contribution from SSBs and other types of DNA damage. These findings have implications for how ATM might recognize DSBs in cells.  相似文献   

8.
The DNA damage checkpoint signaling pathway is a highly conserved surveillance mechanism that ensures genome integrity by sequential activation of protein kinase cascades. In mammals, the main pathway is orchestrated by two central sensor kinases, ATM and ATR, that are activated in response to DNA damage and DNA replication stress. Patients lacking functional ATM or ATR suffer from ataxia-telangiectasia (A-T) or Seckel syndrome, respectively, with pleiotropic degenerative phenotypes. In addition to DNA strand breaks, ATM and ATR also respond to oxidative DNA damage and reactive oxygen species (ROS), suggesting an unconventional function as regulators of intracellular redox status. Here, we summarize the multiple roles of ATM and ATR, and of their orthologs in Saccharomyces cerevisiae, Tel1 and Mec1, in DNA damage checkpoint signaling and the oxidative stress response, and discuss emerging ideas regarding the possible mechanisms underlying the elaborate crosstalk between those pathways. This review may provide new insights into the integrated cellular strategies responsible for maintaining genome stability in eukaryotes with a focus on the yeast model organism.  相似文献   

9.
Chronic hyperaldosteronism has been associated with an increased cancer risk. We recently showed that aldosterone causes an increase in cell oxidants, DNA damage, and NF-κB activation. This study investigated the mechanisms underlying aldosterone-induced increase in cell oxidants in kidney tubule cells. Aldosterone caused an increase in both reactive oxygen and reactive nitrogen (RNS) species. The involvement of the activation of NADPH oxidase in the increase in cellular oxidants was demonstrated by the inhibitory action of the NADPH oxidase inhibitors DPI, apocynin, and VAS2870 and by the migration of the p47 subunit to the membrane. NADPH oxidase activation occurred as a consequence of an increase in cellular calcium levels and was mediated by protein kinase C. The prevention of RNS increase by BAPTA-AM, W-7, and L-NAME indicates a calcium-calmodulin activation of NOS. A similar pattern of effects of the NADPH oxidase and NOS inhibitors was observed for aldosterone-induced DNA damage and NF-κB activation, both central to the pathogenesis of chronic aldosteronism. In summary, this paper demonstrates that aldosterone, via the mineralocorticoid receptor, causes an increase in kidney cell oxidants, DNA damage, and NF-κB activation through a calcium-mediated activation of NADPH oxidase and NOS. Therapies targeting calcium, NOS, and NADPH oxidase could prevent the adverse effects of hyperaldosteronism on kidney function as well as its potential oncogenic action.  相似文献   

10.
Inhibition of Chk1 by activated PKB/Akt   总被引:2,自引:0,他引:2  
We have shown recently that DNA damage effector kinase Chk1 is phosphorylated in vitro by protein kinase B/Akt (PKB/Akt) on serine 280. Activation of Chk1 by DNA damage in vivo is suppressed in presence of activated PKB. In this study we show that Chk1 is phosphorylated by PKB in vivo, and that increased phosphorylation by PKB on serine 280 correlates with impairment of Chk1 activation by DNA damage. Our results indicate a likely mechanism for the negative effects that phosphorylation of serine 280 has on activation of Chk1. The Chk1 protein phosphorylated by PKB on serine 280 does not enter into protein complexes after replication arrest. Moreover, Chk1 phosphorylated by PKB fails to undergo activating phosphorylation on serine 345 by ATM/ATR. Phosphorylation by ATM/ATR and association with other checkpoint proteins are essential steps in activation of Chk1. Inhibition of these steps provides a plausible explanation for the observed attenuation of Chk1 activation by activated PKB after DNA damage.  相似文献   

11.
Glioblastoma-initiating cells (GICs) are self-renewing tumorigenic sub-populations, contributing to therapeutic resistance via decreased sensitivity to ionizing radiation (IR). GIC survival following IR is attributed to an augmented response to genotoxic stress. We now report that GICs are primed to handle additional stress due to basal activation of single-strand break repair (SSBR), the main DNA damage response pathway activated by reactive oxygen species (ROS), compared with non-GICs. ROS levels were higher in GICs and likely contributed to the oxidative base damage and single-strand DNA breaks found elevated in GICs. To tolerate constitutive DNA damage, GICs exhibited a reliance on the key SSBR mediator, poly-ADP-ribose polymerase (PARP), with decreased viability seen upon small molecule inhibition to PARP. PARP inhibition (PARPi) sensitized GICs to radiation and inhibited growth, self-renewal, and DNA damage repair. In vivo treatment with PARPi and radiotherapy attenuated radiation-induced enrichment of GICs and inhibited the central cancer stem cell phenotype of tumor initiation. These results indicate that elevated PARP activation within GICs permits exploitation of this dependence, potently augmenting therapeutic efficacy of IR against GICs. In addition, our results support further development of clinical trials with PARPi and radiation in glioblastoma.  相似文献   

12.
The activated insulin-like growth factor-I receptor (IGF-IR) is implicated in mitogenesis, transformation, and anti-apoptosis. To investigate the role of the IGF-IR in protection from UV-mimetic-induced DNA damage, 4-nitroquinoline N-oxide (4-NQO) was used. In this study we show that the activation of the IGF-IR is capable of rescuing NWTb3 cells overexpressing normal IGF-IRs from 4-NQO-induced DNA damage as demonstrated by cellular proliferation assays. This action was specific for the IGF-IR since cells expressing dominant negative IGF-IRs were not rescued from 4-NQO UV-mimetic treatment. DNA damage induced by 4-NQO in NWTb3 cells was significantly decreased after IGF-IR activation as measured by comet assay. IGF-I was also able to overcome the cell cycle arrest, observed after 4-NQO treatment, thereby enhancing the ability of NWTb3 cells to enter S phase. Interestingly, the p38 mitogen-activated protein kinase pathway was shown to represent the main signaling pathway involved in the IGF-IR-mediated rescue of UV-like damaged cells. The ability of the IGF-IR to induce DNA repair was also demonstrated by infecting NWTb3 cells with UV-irradiated adenovirus. Activation of the IGF-IR resulted in enhanced beta-galactosidase reporter gene activity demonstrating repair of the damaged DNA. This study indicates a direct role of the IGF system in the rescue of damaged cells via DNA repair.  相似文献   

13.
Cisplatin is one of the most effective anti-cancer drugs; however, the use of cisplatin is limited by its toxicity in normal tissues, particularly injury of the kidneys. The mechanisms underlying the therapeutic effects of cisplatin in cancers and side effects in normal tissues are largely unclear. Recent work has suggested a role for p53 in cisplatin-induced renal cell apoptosis and kidney injury; however, the signaling pathway leading to p53 activation and renal apoptosis is unknown. Here we demonstrate an early DNA damage response during cisplatin treatment of renal cells and tissues. Importantly, in the DNA damage response, we demonstrate a critical role for ATR, but not ATM (ataxia telangiectasia mutated) or DNA-PK (DNA-dependent protein kinase), in cisplatin-induced p53 activation and apoptosis. We show that ATR is specifically activated during cisplatin treatment and co-localizes with H2AX, forming nuclear foci at the site of DNA damage. Blockade of ATR with a dominant-negative mutant inhibits cisplatin-induced p53 activation and renal cell apoptosis. Consistently, cisplatin-induced p53 activation and apoptosis are suppressed in ATR-deficient fibroblasts. Downstream of ATR, both Chk1 and Chk2 are phosphorylated during cisplatin treatment in an ATR-dependent manner. Interestingly, following phosphorylation, Chk1 is degraded via the proteosomal pathway, whereas Chk2 is activated. Inhibition of Chk2 by a dominant-negative mutant or gene deficiency attenuates cisplatin-induced p53 activation and apoptosis. In vivo in C57BL/6 mice, ATR and Chk2 are activated in renal tissues following cisplatin treatment. Together, the results suggest an important role for the DNA damage response mediated by ATR-Chk2 in p53 activation and renal cell apoptosis during cisplatin nephrotoxicity.  相似文献   

14.
Gastroesophageal reflux is associated with adenocarcinoma in Barrett's esophagus, but the incidence of this tumor is rising, despite widespread use of acid-suppressing medications. This suggests that refluxed material other than acid might contribute to carcinogenesis. We looked for potentially carcinogenetic effects of two bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on Barrett's epithelial cells in vitro and in vivo. We exposed Barrett's (BAR-T) cells to DCA or UDCA and studied the generation of reactive oxygen/nitrogen species (ROS/RNS); expression of phosphorylated H2AX (a marker of DNA damage), phosphorylated IkBα, and phosphorylated p65 (activated NF-κB pathway proteins); and apoptosis. During endoscopy in patients, we took biopsy specimens of Barrett's mucosa before and after esophageal perfusion with DCA or UDCA and assessed DNA damage and NF-κB activation. Exposure to DCA, but not UDCA, resulted in ROS/RNS production, DNA damage, and NF-κB activation but did not increase the rate of apoptosis in BAR-T cells. Pretreatment with N-acetyl-l-cysteine (a ROS scavenger) prevented DNA damage after DCA exposure, and DCA did induce apoptosis in cells treated with NF-κB inhibitors (BAY 11-7085 or AdIκB superrepressor). DNA damage and NF-κB activation were detected in biopsy specimens of Barrett's mucosa taken after esophageal perfusion with DCA, but not UDCA. These data show that, in Barrett's epithelial cells, DCA induces ROS/RNS production, which causes genotoxic injury, and simultaneously induces activation of the NF-κB pathway, which enables cells with DNA damage to resist apoptosis. We have demonstrated molecular mechanisms whereby bile reflux might contribute to carcinogenesis in Barrett's esophagus.  相似文献   

15.
An increase in protease activity was shown in thymus nuclei of rats exposed to gamma-radiation. The activation of histone-specific proteases depended on the duration of postradiation period. Also, it was revealed that incubation of thymus nuclear with the intermembrane fraction of liver mitochondria caused degradation of histones and nonhistone nuclear proteins, as well as internucleosomal fragmentation of DNA. Simultaneously, nuclear proteases tightly bound to histones and specifically cleaving histones were observed to be activated by apoptogenic factors of the mitochondrial intermembrane fraction. Probably, the apoptogenic action of gamma-radiation involves not only a direct DNA damage that induces activation of DNA-dependent proteases but also an indirect component: destructive alterations in mitochondria leading to the exit of apoptogenic factors from the intermembrane space.  相似文献   

16.
Poly-ADP-ribose polymerase (PARP) is considered to play an important role in oxidative cell damage. We assumed that ischemia-reperfusion resulting from the increasing reactive oxygen species (ROS) can lead to the activation of endogenous mono- and poly-ADP-ribosylation reactions and that the reduction of ROS level by lipoamide, a less known antioxidant, can reverse these unfavorable processes. Experiments were performed on isolated Langendorff hearts subjected to 60-min ischemia followed by reperfusion. ROS, malondialdehyde, deoxyribonucleic acid (DNA) breaks, and NAD+ content were assayed in the hearts, and the ADP-ribosylation of cytoplasmic and nuclear proteins were determined by Western blot assay. Ischemia-reperfusion caused a moderate (30.2 +/- 8%) increase in ROS production determined by the dihydrorhodamine 123 method and significantly increased the malondialdehyde production (from < 1 to 23 +/- 2.7 nmol/ml), DNA damage (undamaged DNA decreased from 71 +/- 7% to 23.1 +/- 5%), and NAD+ catabolism. In addition, ischemia-reperfusion activated the mono-ADP-ribosylation of GRP78 and the self-ADP-ribosylation of the nuclear PARP. The perfusion of hearts with lipoamide significantly decreased the ischemia-reperfusion-induced cell membrane damage determined by enzyme release (LDH, CK, and GOT), decreased the ROS production, reduced the malondialdehyde production to 5.5 +/- 2.4 nmol/ml, abolished DNA damage, and reduced NAD+ catabolism. The ischemia-reperfusion-induced activation of poly- and mono-ADP-ribosylation reactions were also reverted by lipoamide. In isolated rat heart mitochondria, dihydrolipoamide was found to be a better antioxidant than dihydrolipoic acid. Ischemia-reperfusion by ROS overproduction and increasing DNA breaks activates PARP leading to accelerated NAD+ catabolism, impaired energy metabolism, and cell damage. Lipoamide by reducing ROS levels halts PARP activation and membrane damage and improves the recovery of postischemic myocardium.  相似文献   

17.
Repair enzyme-containing extracts from a variety of cell types are used to analyse and compare DNA damage induced by oxygen radicals and excited molecules. The differing potentials of these extracts for recognising DNA damage leads to characteristic DNA damage profiles after treatment with superoxide (xanthine/xanthine oxidase), gamma-rays, chemically generated singlet oxygen, photosensitizers (rose bengal, methylene blue), UV254 and a 1,2-dioxetane. Three different types of damage profiles are distinguished and assigned to the predominant action of hydroxyl radicals, singlet oxygen or to the photoexcitation of thymine residues. The method applied in this study allows the analysis of DNA damage and the identification or exclusion of the participation of different ultimate reactive species without chemical identification of the lesions.  相似文献   

18.
Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-κB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (γ-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-κB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-κB activation (e.g. in IκBα super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-κB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-κB activation, blocked TNFα- but not HDACI-mediated NF-κB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-κB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, γ-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-κB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-κB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.  相似文献   

19.
The neocarzinostatin chromophore causes double-strand damage at AGC sequences on DNA by concomitant 1'-oxidation at C and 5'-oxidation at the T on the complementary strand. The extent of this damage is dependent upon the structure of the thiol used for activation. Deuterium isotope effects suggest that this dependence on thiol structure may be due to internal quenching of one radical site of the activated chromophore by the hydrogen atoms of the thiol sidechain. The 12-mer d[GCAAGCGCTTGC] is treated with the neocarzinostatin chromophore and either sodium thioglycolate or [2-2H2]-thioglycolate, and the distribution of strand breaks is determined by gel electrophoresis. Two isotope effects are noted: an overall sequence-independent effect in which deuterated thioglycolate increases total strand damage by a factor of 2, and a sequence-specific effect by which deuteration increases the proportion of alkali-sensitive strand damage at C6 by an additional factor of 1.5. Methyl thioglycolate shows essentially identical behavior to that of thioglycolate anion, ruling out electrostatic effects as major contributors to the effect of thiol structure on the mode of DNA damage observed. A model for NCSC action consistent with these results is discussed.  相似文献   

20.
在大部分的肿瘤中都发现有癌基因的活化,癌基因的活化被认为是导致肿瘤发生的重要原因.然而,在野生型细胞内,癌基因的活化可以诱导细胞衰老,称为癌基因诱导的细胞衰老(oncogene-induced senescence, OIS),从而抑制进一步的肿瘤发生.因而,癌基因的活化具有诱导衰老或肿瘤的双向性.DNA损伤调控反应(DNA damage checkpoint response, DDR)是细胞应对DNA损伤时感应损伤,从而延迟或阻滞细胞周期进程的一种分子信号传递通路,是诱导细胞衰老的重要机制.癌基因的活化可以引发DNA损伤信号的产生,从而激活DDR,诱导细胞衰老.在DDR异常时,癌基因的激活可引发DNA的过度复制与细胞的过度增殖,并导致基因组不稳定性的积累,最终导致肿瘤发生.DDR的完整性决定了癌基因诱导的双向性.DDR在癌基因诱导中的重要作用,提示了保持和恢复DDR的完整性可以作为肿瘤预防和治疗的新方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号