首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensory rhodopsin from Anabaena (Nostoc) sp. PCC7120 is the first cyanobacterial retinylidene protein identified. Here, we report on NosACO (Nostoc apo-carotenoid oxygenase), encoded by the ORF (open reading frame) all4284, as the candidate responsible for the formation of the required chromophore, retinal. In contrast with the enzymes from animals, NosACO converts beta-apo-carotenals instead of beta-carotene into retinal in vitro. The identity of the enzymatic products was proven by HPLC and gas chromatography-MS. NosACO exhibits a wide substrate specificity with respect to chain lengths and functional end-groups, converting beta-apo-carotenals, (3R)-3-hydroxy-beta-apo-carotenals and the corresponding alcohols into retinal and (3R)-3-hydroxyretinal respectively. However, kinetic analyses revealed very divergent Km and Vmax values. On the basis of the crystal structure of SynACO (Synechocystis sp. PCC6803 apo-carotenoid oxygenase), a related enzyme showing similar enzymatic activity, we designed a homology model of the native NosACO. The deduced structure explains the absence of beta-carotene-cleavage activity and indicates that NosACO is a monotopic membrane protein. Accordingly, NosACO could be readily reconstituted into liposomes. To localize SynACO in vivo, a Synechocystis knock-out strain was generated expressing SynACO as the sole carotenoid oxygenase. Western-blot analyses showed that the main portion of SynACO occurred in a membrane-bound form.  相似文献   

2.
Whether the conversion of beta-carotene into retinoids involves an enzymatic excentric cleavage mechanism was examined in vitro with homogenates prepared from human, monkey, ferret, and rat tissue. Using high-performance liquid chromatography, significant amounts of beta-apo-12'-, -10'-, and -8'-carotenals, retinal, and retinoic acid were found after incubation of intestinal homogenates of the four different species with beta-carotene in the presence of NAD+ and dithiothreitol. No beta-apo-carotenals or retinoids were detected in control incubations done without tissue homogenates. The production of beta-apo-carotenals was linear for 30 min and up to tissue protein concentrations of 1.5 mg/ml. The rate of formation of beta-apo-carotenals from 2 microM beta-carotene was about 7- to 14-fold higher than the rate of retinoid formation in intestinal homogenates, and the rate of beta-apo-carotenal production was fivefold greater in primate intestine vs rat or ferret intestine (P less than 0.05). The amounts of beta-apo-carotenals and retinoids formed were markedly reduced when NAD+ was replaced by NADH, or when dithiothreitol and cofactors were deleted from the incubation mixture. Both beta-apo-carotenal and retinoid production from beta-carotene were inhibited completely by adding disulfiram, an inhibitor of sulfhydryl-containing enzymes. Incubation of beta-carotene with liver, kidney, lung, and fat homogenates from each species also resulted in the appearance of beta-apo-carotenals and retinoids. The identification of three unknown compounds which might be excentric cleavage products is ongoing. These data support the existence of an excentric cleavage mechanism for beta-carotene conversion.  相似文献   

3.
Two cleavage pathways of beta-carotene have been proposed, one by central cleavage and the other by random (excentric) cleavage. The central cleavage pathway involves the metabolism of beta-carotene at the central double bond (15, 15') to produce retinal by beta-carotene 15, 15'-dioxygenase (E.C.888990988). The random cleavage of beta-carotene produces beta-apo-carotenoids, but the mechanism is not clear. To understand the various mechanisms of beta-carotene cleavage, beta-carotene was incubated with the intestinal postmitochondrial fractions of 10-week-old male rats for 1 h, and cleavage products of beta-carotene were analyzed using reverse-phase, high-performance liquid chromatography (HPLC). We also studied the effects of alpha-tocopherol and NAD(+)/NADH on beta-carotene cleavage. In addition to beta-carotene, we used retinal and beta-apo-14'-carotenoic acid as substrates in these incubations. Beta-apo-14'-carotenoic acid is the two-carbon longer homologue of retinoic acid. In the presence of alpha-tocopherol, beta-carotene was converted exclusively to retinal, whereas in the absence of alpha-tocopherol, both retinal and beta-apo-carotenoids were formed. Retinoic acid was produced from both retinal and beta-apo-14'-carotenoic acid incubations only in the presence of NAD(+). Our data suggest that in the presence of an antioxidant such as alpha-tocopherol, beta-carotene is converted exclusively to retinal by central cleavage. In the absence of an antioxidant, beta-carotene is cleaved randomly by enzyme-related radicals to produce beta-apo-carotenoids, and these beta-apo-carotenoids can be oxidized further to retinoic acid via retinal.  相似文献   

4.
In vertebrates, symmetric versus asymmetric cleavage of beta-carotene in the biosynthesis of vitamin A and its derivatives has been controversially discussed. Recently we have been able to identify a cDNA encoding a metazoan beta,beta-carotene-15,15'-dioxygenase from the fruit fly Drosophila melanogaster. This enzyme catalyzes the key step in vitamin A biosynthesis, symmetrically cleaving beta-carotene to give two molecules of retinal. Mutations in the corresponding gene are known to lead to a blind, vitamin A-deficient phenotype. Orthologs of this enzyme have very recently been found also in vertebrates and molecularly characterized. Here we report the identification of a cDNA from mouse encoding a second type of carotene dioxygenase catalyzing exclusively the asymmetric oxidative cleavage of beta-carotene at the 9',10' double bond of beta-carotene and resulting in the formation of beta-apo-10'-carotenal and beta-ionone, a substance known as a floral scent from roses, for example. Besides beta-carotene, lycopene is also oxidatively cleaved by the enzyme. The deduced amino acid sequence shares significant sequence identity with the beta,beta-carotene-15,15'-dioxygenases, and the two enzyme types have several conserved motifs. To establish its occurrence in different vertebrates, we then attempted and succeeded in cloning cDNAs encoding this new type of carotene dioxygenase from human and zebrafish as well. As regards their possible role, the apocarotenals formed by this enzyme may be the precursors for the biosynthesis of retinoic acid or exert unknown physiological effects. Thus, in contrast to Drosophila, in vertebrates both symmetric and asymmetric cleavage pathways exist for carotenes, revealing a greater complexity of carotene metabolism.  相似文献   

5.
The developmental patterns of expression of beta-carotene cleavage enzyme activity were compared with those of retinal reductase and NAD-dependent retinol dehydrogenase activities in chick duodenum during the perinatal period. The beta-carotene cleavage enzyme activity was not detected in the duodenum before hatching, but it increased rapidly during 24 h after hatching. On the other hand, a considerable level of beta-carotene cleavage enzyme activity was observed in the liver of embryonic stages and its activity gradually rose during the perinatal period. Comparison of kinetic constants for the beta-carotene cleavage enzyme activities in the duodenum and the liver indicated that the enzyme in the duodenum possessed a lower affinity for beta-carotene than that in the liver. The retinal reductase activity was detected in the microsomes of the duodenum at the earliest time examined, i.e. day 16 of embryogenesis and its activity began to rise on the last day of embryogenesis, which was followed by a gradual increase until 1 day of age. The NAD-dependent retinol dehydrogenase activity was also seen in the microsomes of the duodenum in embryonic stages and its activity increased in parallel with the retinal reductase activity around the hatching period. These developmental inductions of beta-carotene cleavage enzyme and retinal reductase activities in the duodenum coincided with those of cellular retinol-binding protein, type II (CRBPII) and lecithin: retinol acyltransferase (LRAT). These results suggest that a co-ordinated induction mechanism should be operative for beta-carotene cleavage enzyme and retinal reductase, both of which are inevitable in the process of beta-carotene absorption and metabolism.  相似文献   

6.
S Tajima  T Goda  S Takase 《Life sciences》1999,65(8):841-848
The conversion of beta-carotene to retinal and the succeeding metabolic process of the retinal leading to production of retinol and retinyl esters are the prerequisite for the utilization of beta-carotene as a provitamin A. These processes are participated by beta-carotene cleavage enzyme, retinal reductase and retinol esterifying enzyme(s) in the small intestine. To examine whether these enzymes exhibit the coordinated distribution in the villus, we have used the cryostat sectioning technique to quantify the activities of beta-carotene cleavage enzyme, retinal reductase and retinol esterifying enzymes along the villus-crypt axis in 8-day-old chick duodenum. The beta-carotene cleavage enzyme activity was very low in the crypt and gradually increased, reaching a maximum in the mid-villus. The villus-crypt gradient of the beta-carotene cleavage enzyme activity corresponded with those of retinal reductase activity and lecithin: retinol acyltransferase (LRAT) activity, but distinct from that of acyl-CoA: retinol acyltransferase (ARAT) activity. Furthermore, the distribution of the content of retinyl esters was similar to that of LRAT activity. These results suggest that the beta-carotene cleavage enzyme is coordinately distributed along the villus-crypt axis with retinal reductase and LRAT, the two enzymes which require cellular retinol-binding protein, typeII (CRBPII) as the donor of the substrate.  相似文献   

7.
8.
The authors studied the effect of dithiothreitol (DTT), carotenoids and protease inhibitors on stabilization and protection of the enzyme catalysing the conversion of beta-carotene into retinal during the enzyme isolation from the rabbit small intestine. The addition of 1 mM DTT into the homogenization mixture increased the activity of the enzyme 5 times compared with control. The additional introduction of 0.7 mg/ml soybean trypsin inhibitor or 2.10(-4) M phenylmethylsulfonyl fluoride increased the enzyme activity 2.1 and 1.2 times, respectively. Lutein, beta-carotene and lycopene at a concentration of 10 mg/ml increased the enzyme activity 2.1, 1.9 and 1.6 times respectively. The effects of DTT, lutein and the protease inhibitor depended on their concentrations and was of an independent additive character. The maximum activity of the isolated enzyme exceeded the control without DTT 15 times.  相似文献   

9.
The formation of beta-carotene detergent micelles and their conversion into retinal by recombinant human beta,beta-carotene 15,15'-monooxygenase was optimized under aqueous conditions. Toluene was the most hydrophobic among the organic solvents tested; thus, it was used to dissolve beta-carotene, which is a hydrophobic compound. Tween 80 was selected as the detergent because it supported the highest level of retinal production among all of the detergents tested. The maximum production of retinal was achieved in detergent micelles containing 200 mg/L of beta-carotene and 2.4% (w/v) Tween 80. Under these conditions, the recombinant enzyme produced 97 mg/L of retinal after 16 h with a conversion yield of 48.5% (w/w). The amount of retinal produced, which is the highest ever reported, is a result of the ability of our system to dissolve large amounts of beta-carotene.  相似文献   

10.
We identified the molecular structures, including the stereochemistry, of all carotenoids in Thermosynechococcus elongatus strain BP-1. The major carotenoid was beta-carotene, and its hydroxyl derivatives of (3R)-beta-cryptoxanthin, (3R,3'R)-zeaxanthin, (2R,3R,3'R)-caloxanthin and (2R,3R,2'R,3'R)-nostoxanthin were also identified. The myxol glycosides were identified as (3R,2'S)-myxol 2'-fucoside and (2R,3R,2'S)-2-hydroxymyxol 2'-fucoside. 2-Hydroxymyxol 2'-fucoside is a novel carotenoid, and similar carotenoids of 4-hydroxymyxol glycosides were previously named aphanizophyll. Ketocarotenoids, such as echinenone and 4-ketomyxol, which are unique carotenoids in cyanobacteria, were absent, and genes coding for both beta-carotene ketolases, crtO and crtW, were absent in the genome. From a homology search, the Tlr1917 amino acid sequence was found to be 41% identical to 2,2'- beta-hydroxylase (CrtG) from Brevundimonas sp. SD212, which produces nostoxanthin from zeaxanthin. In the crtG disruptant mutant, 2-hydroxymyxol 2'-fucoside, caloxanthin and nostoxanthin were absent, and the levels of both myxol 2'-fucoside and zeaxanthin were higher. Therefore, the gene has a CrtG function for both myxol to 2-hydroxymyxol and zeaxanthin to nostoxanthin. This is the first functional identification of CrtG in cyanobacteria. We also investigated the distribution of crtG-like genes, and 2-hydroxymyxol and/or nostoxanthin, in cyanobacteria. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the genome in T. elongatus, we propose a biosynthetic pathway of the carotenoids and the corresponding genes and enzymes.  相似文献   

11.
Vitamin A (retinol) and provitamin A (beta-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate gene expression only in chordate animals. Investigation of retinoid metabolic pathways has resulted in the identification of numerous retinoid dehydrogenases that potentially contribute to metabolism of various retinoid isomers to produce active forms. These enzymes fall into three major families. Dehydrogenases catalyzing the reversible oxidation/reduction of retinol and retinal are members of either the alcohol dehydrogenase (ADH) or short-chain dehydrogenase/reductase (SDR) enzyme families, whereas dehydrogenases catalyzing the oxidation of retinal to retinoic acid are members of the aldehyde dehydrogenase (ALDH) family. Compilation of the known retinoid dehydrogenases indicates the existence of 17 nonorthologous forms: five ADHs, eight SDRs, and four ALDHs, eight of which are conserved in both mouse and human. Genetic studies indicate in vivo roles for two ADHs (ADH1 and ADH4), one SDR (RDH5), and two ALDHs (ALDH1 and RALDH2) all of which are conserved between humans and rodents. For several SDRs (RoDH1, RoDH4, CRAD1, and CRAD2) androgens rather than retinoids are the predominant substrates suggesting a function in androgen metabolism as well as retinoid metabolism.  相似文献   

12.
Biosynthesis of retinal in bovine corpus luteum   总被引:1,自引:0,他引:1  
Bovine corpus luteum tissue was sliced and incubated with beta-[15,15'-(3)H]carotene. The conversion of radioactive beta-carotene into radioactive retinal was substantiated utilizing column chromatography, thin-layer chromatography, high-speed liquid chromatography, and a derivative formation. Lowering of the incubation temperature to 20 degrees C or boiling the tissue eliminated the conversion of beta-carotene to retinal. In addition, other carotenoids and possible oxidation products of beta-carotene in the corpus luteum were investigated. Our results indicate that the bovine corpus luteum possesses the ability to synthesize retinal in situ, which may play a role in reproductive functions.  相似文献   

13.
Beta-carotene 15,15'-dioxygenase cleaves beta-carotene into two molecules of retinal and is the key enzyme in the metabolism of carotene to vitamin A. Although the enzyme has been known for more than 40 years, all attempts to purify the protein to homogeneity or to clone its gene have failed until recently, when the successful cloning and sequencing of cDNAs encoding enzymes with beta-carotene 15,15'-dioxygenase activity from Drosophila (J. von Lintig and K. Vogt, 2000, J. Biol. Chem. 275, 11915-11920) and chicken (A. Wyss et al., 2000, Biochem. Biophys. Res. Commun. 271, 334-336) were reported. Very soon it became clear, that we have cloned two members of a new family of carotenoid cleaving enzymes. Overall homologies are very high, certain amino acid stretches almost identical. Thus, beta-carotene 15,15'-dioxygenase can be considered as evolutionarily well conserved. These findings open up wide perspectives for further analysis of this important biosynthetic pathway, concerning basic and medical research as well as biotechnological aspects related to vitamin A supply, which are discussed here.  相似文献   

14.
A convenient method is suggested of synthesis of (3R, 4R)-, (3S, 4S)- and (3R/S, 4S/R)-dihydroxy-3-hydroxymethyl-2-oxapentyl derivatives of the, cytosine, uracyl, adenine and guanine ("full" acyclic analogues of nucleosides with C1'-C2' bond cleaved) by condensation of trimethylsilyl derivatives of nucleic bases (sodium salt in case of adenine) with (3$, 4R)-, (3S )-, (3S, 4S)- and (3R/S, 4S/R)-4,5-diacetoxy-3-acetoxymethyl-1-chloro-2-oxapentanes without catalyst followed by deacetylation.  相似文献   

15.
BbvCI cleaves an asymmetric DNA sequence, 5'-CC downward arrow TCAGC-3'/5'-GC downward arrow TGAGG-3', as indicated. While many Type II restriction enzymes consist of identical subunits, BbvCI has two different subunits: R(1), which acts at GC downward arrow TGAGG; and R(2), which acts at CC downward arrow TCAGC. Some mutants of BbvCI with defects in one subunit, either R(1)(-)R(2)(+) or R(1)(+)R(2)(-), cleave only one strand, that attacked by the native subunit. In analytical ultracentrifugation at various concentrations of protein, wild-type and mutant BbvCI enzymes aggregated extensively, but are R(1)R(2) heterodimers at the concentrations used in DNA cleavage reactions. On a plasmid with one recognition site, wild-type BbvCI cleaved both strands before dissociating from the DNA, while the R(1)(-)R(2)(+) and R(1)(+)R(2)(-) mutants acted almost exclusively on their specified strands, albeit at relatively slow rates. During the wild-type reaction, the DNA is cleaved initially in one strand, mainly that targeted by the R(1) subunit. The other strand is then cleaved slowly by R(2) before the enzyme dissociates from the DNA. Hence, the nicked form accumulates as a transient intermediate. This behaviour differs from that of many other restriction enzymes, which cut both strands at equal rates. However, the activities of the R(1)(+) and R(2)(+) subunits in the wild-type enzyme can differ from their activities in the R(1)(+)R(2)(-) and R(1)(-)R(2)(+) mutants. Each active site in BbvCI therefore influences the other.  相似文献   

16.
The symmetrically cleaving beta-carotene 15,15'-monooxygenase (BCO1) catalyzes the first step in the conversion of provitamin A carotenoids to vitamin A in the mucosa of the small intestine. This enzyme is also expressed in epithelia in a variety of extraintestinal tissues. The newly discovered beta-carotene 9',10'-monooxygenase (BCO2) catalyzes asymmetric cleavage of carotenoids. To gain some insight into the physiological role of BCO2, we determined the expression pattern of BCO2 mRNA and protein in human tissues. By immunohistochemical analysis it was revealed that BCO2 was detected in cell types that are known to express BCO1, such as epithelial cells in the mucosa of small intestine and stomach, parenchymal cells in liver, Leydig and Sertoli cells in testis, kidney tubules, adrenal gland, exocrine pancreas, and retinal pigment epithelium and ciliary body pigment epithelia in the eye. BCO2 was uniquely detected in cardiac and skeletal muscle cells, prostate and endometrial connective tissue, and endocrine pancreas. The finding that the BCO2 enzyme was expressed in some tissues and cell types that are not sensitive to vitamin A deficiency and where no BCO1 has been detected suggests that BCO2 may also be involved in biological processes other than vitamin A synthesis.  相似文献   

17.
beta,beta-Carotene 15,15'-dioxygenase cleaves beta-carotene into two molecules of retinal and is therefore the key enzyme in beta-carotene metabolism to vitamin A. In the present study, it was possible to enrich the chicken beta,beta-carotene 15,15'-dioxygenase to such an extent that partial amino acid sequence information could be obtained to design degenerate oligonucleotides. With RT-PCR a cDNA fragment could be obtained and used subsequently in a radioactive screening of a chicken duodenal expression library. We cloned the first eukaryotic beta,beta-carotene 15,15'-dioxygenase which symmetrically cleaves beta-carotene at the 15,15'-double bond.  相似文献   

18.
Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes that oxidatively cleave carotenoids into apocarotenoids. Dioxygenases have been identified in plants and animals and produce a wide variety of cleavage products. Despite what is known about apocarotenoids in higher organisms, very little is known about apocarotenoids and CCDs in microorganisms. This study surveyed cleavage activities of ten putative carotenoid cleavage dioxygenases from five different cyanobacteria in recombinant Escherichia coli cells producing different carotenoid substrates. Three CCD homologs identified in Nostoc sp. PCC 7120 were purified, and their cleavage activities were investigated. Two of the three enzymes showed cleavage of beta,beta-carotene at the 9,10 and 15,15' positions, respectively. The third enzyme did not cleave full-length carotenoids but cleaved the apocarotenoid beta-apo-8'-carotenal at the 9,10 position. 9,10-Apocarotenoid cleavage specificity has previously not been described. The diversity of carotenoid cleavage activities identified in one cyanobacteria suggests that CCDs not only facilitate the degradation of photosynthetic pigments but generate apocarotenals with yet to be determined biological roles in microorganisms.  相似文献   

19.
Yamaguchi N  Suruga K 《Life sciences》2008,82(13-14):789-796
Vitamin A is derived from provitamin A carotenoids, mainly beta-carotene, by beta-carotene 15,15'-monooxygenase (CMO1; EC 1.13.11.21). We previously found that enhancement of CMO1 mRNA expression was related to the levels of hormones, such as thyroid hormones, in chick duodenum. We investigated whether CMO1 expression was increased by triiodothyronine (T3), a thyroid hormone, using human intestinal Caco-2 BBe cells. Treatment of 7 days post-confluent Caco-2 BBe cells with T3 significantly enhanced CMO1 mRNA levels in both dose- and time-dependent manners. This T3-inducing effect on CMO1 mRNA level was blocked by actinomycin D. The levels of mRNAs for the thyroid hormone receptors TRalpha1 and TRbeta1 were significantly increased in 7 days post-confluent Caco-2 BBe cells. CMO1 enzyme activity was also significantly increased by T3 treatment in medium supplemented with fetal bovine serum. Furthermore, T3 treatment also increased the level of mRNA for lecithin:retinol acyltransferase (LRAT), but not those for cellular retinol-binding protein, type II (CRBPII) and retinal dehydrogenase 1 (RALDH1), in Caco-2 BBe cells. These results indicate that T3 is an important hormone for the regulation of vitamin A and beta-carotene metabolism-related gene expression in human small intestinal cells.  相似文献   

20.
Biological activity of polyoma viral DNA in mice and hamsters.   总被引:12,自引:0,他引:12       下载免费PDF全文
The biological activity of polyoma viral DNA was evaluated in mice and hamsters. Viral DNA administered parenterally is about 4 to 5 logs less efficient than polyoma virions in establishing infection in mice. Supercoiled viral DNA was infectious for mice after parenteral administration, giving mean infective doses of 10(-3) to 10(-4) microgram. However, animals fed microgram quantities of polyoma DNA I did not become infected. Linearization of viral DNA with R.EcoRI or R.BamHI, which are single-cut enzymes cleaving in the early and late regions of the genome, respectively, reduced the infectivity for mice approximately fivefold. Approximately 10% of newborn hamsters inoculated intraperitoneally with polyoma DNA I developed tumors. In contrast, the same amount of viral DNA which had been cleaved in the early region with R.EcoRI induced tumors in 50% of inoculated hamsters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号