首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 We compared modern pollen assemblages from 60 moss polster sites in northern New York with forest composition data within 20–120 m of the sites using extended R ‐value (ERV) models, which correct for non‐linearities arising from use of pollen percentage data. Our sites were concentrated in two regions, one dominated by Tsuga and hardwood ( Acer , Betula , Fagus ) forests, and the other by Tsuga , Pinus , Betula , Acer and Quercus forests.
2 Our results confirm that forest‐floor pollen assemblages are dominated by pollen originating from trees growing more than 20 m from the site of deposition. However, our results suggest that background pollen percentages were overestimated by Jackson & Wong in 1994, owing to unusually high Pinus pollen production in the year of their sampling.
3 Expansion of our vegetation sampling radius from 20 to 120 m resulted in modest but consistent improvement in model fit and a decrease in background pollen percentages.
4 ERV model parameters (slope and background) differed substantially between the two study regions, primarily owing to differences in background pollen productivity and dispersal from regional sources.
5 High background pollen percentages may lead to poor estimation of calibration parameters in regions of complex vegetation patterns. Expansion of the vegetation sampling radius to reduce the background component may lead to better parameter estimates.
6 Calibration of pollen–vegetation relationships requires definition of the vegetation term so that it approximates the vegetation sampled by the pollen assemblages. Critical challenges are to define better the appropriate vegetation sampling area and distance‐weighting functions for application to pollen–vegetation calibration.  相似文献   

2.
We have limited understanding of which environmental factors structure the distribution patterns and composition of Antarctic macrobenthos assemblages, and the spatial scales on which such factors operate. In 2004, the “BioRoss Survey” was conducted on the northwestern Ross Sea shelf between Cape Adare and Cape Hallett in depths of 50–750 m to describe and quantify the assemblage patterns of benthic macroinvertebrates. In order to determine the influence of primary productivity, disturbance and habitat heterogeneity on the distribution and composition of the macrofaunal assemblages, polychaete data derived from 52 grab samples were analysed. Although differences in the composition of polychaete assemblages among different sampling transects and depth strata were not particularly pronounced (yet statistically significant), the results suggested that large-scale differences in both primary productivity and iceberg disturbance influence distribution patterns. The combination of sediment chl a content, sorting coefficient, sponge spicule content and distance to the nearest iceberg scour best explained polychaete assemblage patterns. This finding supports previous contentions that multiple environmental drivers working at varying scales influence Antarctic shelf assemblages. The results do not supply support for a pronounced decoupling of pelagic and benthic systems, as has been suggested by another study of deeper water benthic assemblages on the Ross Sea shelf.  相似文献   

3.
Aims Forest vegetation variability may be explained by the complex interplay among several spatial structuring factors, including climate and topography. We modelled the spatial variability of forest vegetation assemblages and significant environmental variables along a complex environmental gradient or coenocline to produce a detailed cartographic database portraying the distribution of forests along it.Methods We combined an analysis of ordination coenoclines with kriging over 772 field data plots from the third Spanish National Forest Inventory in an Atlantic–Mediterranean transitional area (northern Spain).Important findings The best fitted empirical semivariogram revealed a strong spatial structure of forest species composition along the complex environmental gradient considered (the climatic–topographic gradient from north to south). The steady and gradual increase of semivariance with a marked lag distance indicates a gradual turnover of forest assemblages according to the climatic–topographic variations (regional or local). Two changes in the slope of the semivariogram suggest the existence of two different scales of spatial variation. The interpolation map by Kriging of forest vegetation assemblages along the main coenocline shows a clear spatial distribution pattern of trees and shrubs in accordance with the spatial variation of significant environmental variables. We concluded that the multivariate geostatistical approach is a suitable technique for spatial analysis of forest systems employing data from national forest inventories based on a regular network of field plots. The development of an assortment of maps describing changes in vegetation assemblages and variation in environmental variables is expected to be a suitable tool for an integrated forest management and planning.  相似文献   

4.
We investigated how long‐term suppression of populations of a top predator, the dingo Canis dingo, affected composition of sympatric avifauna in Australian deserts, by surveying bird assemblages across ~80 000 km2 of arid dune‐fields on either side of the Dingo Barrier Fence (DBF; a 5614 km‐long fence separating ecosystems in which dingoes are abundant from ecosystems in which dingoes are functionally extinct). Using fourth‐corner modelling, incorporating species’ traits, we identified apparent declines of sedentary birds that nest in low vegetation and small birds that feed primarily on grass seed, and increases in scavenging birds associated with the functional extinction of dingoes. Occupancy differed between sites inside and outside the DBF in 13 bird species. We hypothesise that these differences in bird assemblages across the DBF result, in part, from increases in kangaroos Macropus spp. and red foxes Vulpes vulpes in arid landscapes where dingoes have been removed. Our study provides evidence that the functional extinction of a large terrestrial predator has had pervasive ecosystem effects, including shifts in composition of avian assemblages.  相似文献   

5.
ABSTRACT.   Dispersal is a critical link between organismal and population biology, yet, because of their mobility, our understanding of the causes and consequences of long-distance dispersal by birds remains poorly known. Methods used to study dispersal include (1) marking and recapturing individuals in a limited study area to estimate survival and dispersal rates, and (2) relying on volunteers to mark and recapture individuals over larger areas. We compared these two methods for measuring dispersal distances of Tree Swallows ( Tachycineta bicolor ) using recapture data from a limited-area study in New York State (the Swallow Dispersal Study, SDS) and the recapture dataset from the U.S. Bird Banding Laboratory (BBL). Analysis of BBL records revealed a difference in the dispersal distance distributions (DDD) for data reported before and after 1967. In the earlier data, 84% of the 238 records were for birds within 13.6 km of their first banding location, whereas only 22% of the 799 records in the more recent data were reported in this closest distance belt. These differences are almost certainly due to changes in reporting protocols instituted by the BBL in the mid-1960s. We corrected for recapture effort in the SDS, and, using this corrected SDS data for the proportion of birds returning in the closest distance belt and the recent BBL for the proportions of more distant movements, we created what we think is the best composite DDD for Tree Swallows. Even though dispersal distances up to 2367 km have been reported, the composite DDD indicates that fewer than 3% of birds disperse more than 100 km and that 85% disperse less than 15 km between years. Thus, our results suggest that the dispersal behavior of most individuals can be examined effectively at more local spatial scales. Studies of dispersal and mortality would be facilitated if all recaptures of banded birds were reported with accurate spatial coordinates to the Bird Banding Laboratory.  相似文献   

6.
1. Macroinvertebrate assemblages were studied in the glacial river West-Jökulsá, originating from the Hofsjökull Ice Cap in central Iceland at an altitude of 860 m. Sampling sites were distributed from the source to 45 km downstream at 160 m a.s.l. Comparative studies were carried out on non-glacial rivers and tributaries in the area, at similar altitudes and distances from the glacial source.
2. Detrended correspondence analysis (DCA) demonstrated that species composition of benthic macroinvertebrates was related to the distance from the glacier. Assemblages at sampling sites furthest from the glacier were similar in species composition to sites in non-glacial rivers. Temporal variation was small compared with longitudinal zonation.
3. Based on canonical correspondence analysis (CCA) of data from the main glacial river, distance from the glacier, altitude, bryophyte biomass and the Pfankuch Index of channel stability were the measured explanatory variables having a significant effect on the structure of macroinvertebrate assemblages, accounting for 31% of the total variation in the data set. When data from all the rivers were analysed, altitude, bryophyte biomass, channel slope, suspended sediment concentration and maximum water temperature explained 21% of the variance.
4. Macroinvertebrate communities were in general agreement with the predictions of the conceptual model of Milner & Petts (1994) for the upstream reaches. The assemblages consisted mainly of Orthocladiinae and Diamesinae (Chironomidae), although other taxa such as Simuliidae, Plecoptera and Trichoptera were also found in low numbers. Shredders were lacking from the benthic communities, apparently because of continued glacial influence in the river even 45 km downstream from the glacier and lack of allochthononus inputs from riparian vegetation.  相似文献   

7.
Productivity, habitat heterogeneity and environmental similarity are of the most widely accepted hypotheses to explain spatial patterns of species richness and species composition similarity. Environmental factors may exhibit seasonal changes affecting species distributions. We explored possible changes in spatial patterns of bird species richness and species composition similarity. Feeding habits are likely to have a major influence in bird–environment associations and, given that food availability shows seasonal changes in temperate climates, we expect those associations to differ by trophic group (insectivores or granivores). We surveyed birds and estimated environmental variables along line‐transects covering an E‐W gradient of annual precipitation in the Pampas of Argentina during the autumn and the spring. We examined responses of bird species richness to spatial changes in habitat productivity and heterogeneity using regression analyses, and explored potential differences between seasons of those responses. Furthermore, we used Mantel tests to examine the relationship between species composition similarity and both the environmental similarity between sites and the geographic distance between sites, also assessing differences between seasons in those relationships. Richness of insectivorous birds was directly related to primary productivity in both seasons, whereas richness of seed‐eaters showed a positive association with habitat heterogeneity during the spring. Species composition similarity between assemblages was correlated with both productivity similarity and geographic proximity during the autumn and the spring, except for insectivore assemblages. Diversity within main trophic groups seemed to reflect differences in their spatial patterns as a response to changes between seasons in the spatial patterns of food resources. Our findings suggest that considering different seasons and functional groups in the analyses of diversity spatial pattern could contribute to better understand the determinants of biological diversity in temperate climates.  相似文献   

8.
Questions: Are species richness and species abundances higher in the presence of tidal creeks? Do species richness and species abundances vary with plot size? Location: Intertidal plain of Volcano Marsh, Bahia de San Quintin, Mexico. Methods: We analysed vegetation patterns in large areas (cells) with tidal creeks (+creek) and without (‐creek). We surveyed vegetation cover, microtopography, habitat type, and distance to creeks in nested plots of five sizes, 0.1, 0.25, 1, 2.5, and 10 m2. Results: Species richness, frequency, cover, and assemblages differed between ±creek cells. Richness tended to be higher in +creek cells, and cover and frequency of individual species differed significantly between ±creek cells. We found consistent patterns in vegetation structure across plot sizes. We encountered 13 species that occurred in 188 unique assemblages. The most common assemblage had six species: Batis maritima, Frankenia salina, Salicornia bigelovii, S. virginica, Salicornia spec. and Triglochin concinna. This assemblage occurred in ±creek cells and at all spatial scales. Of the most common assemblages all but one were composed of multiple species (3–9 species/plot). Conclusions: The persistence of vegetation patterns across a 100‐fold range in spatial scale suggests that similar environmental factors operate broadly to determine species establishment and persistence. Differences in assemblage composition result from variation of frequency and cover of marsh plain species, particularly Suaeda esteroa and Monanthochloe littoralis. The recommendation for restoration of Californian salt marshes is to target (and plant) multi‐species assemblages, not monocultures.  相似文献   

9.
Aim We examined the relative influence of geographical location, habitat structure (physiognomy), and dominant plant species composition (floristics) on avian habitat relationships over a large spatial extent. Although it has been predicted that avian distributions are more likely to covary with physiognomy than with floristics at coarse scales, we sought to determine, more specifically, whether there remained a significant association between gradients in assemblages of bird species and dominant plant species within a general biome type, after statistically controlling for structural variation and geographical location of sampling sites. Location Our sample consisted of a subset of North American Breeding Bird Census survey sites that covered most of the range of eastern forests, from Florida to Nova Scotia, and west to Minnesota and North Dakota (up to c. 2500 km between sites). Methods We restricted our analyses to the single year (1981) that provided the largest sample of sites (47) for which vegetation data were available within ± 2 years of the avian surveys. We examined the relationship between avian community composition and tree species composition over this series of forested plots. Data were divided into four sets: (1) bird species abundances, (2) tree species abundances, (3) physiognomic or structural variables and (4) geographical location (latitude and longitude). We performed separate detrended correspondence analysis ordinations of birds and trees, before and after statistically partialling out covariation associated with structural variables and geographical location. To gauge the relationship between the two sets of species we correlated site scores resulting from separate ordinations. We also compared continental‐scale patterns of variation in bird and tree assemblages to understand possible mechanisms controlling species distribution at that scale. Results Both bird and tree communities yielded strong gradients, with first‐axis eigenvalues from 0.75 to 0.97. All gradients were relatively long (> 4.0), implying complete turnover in species composition. However, geographical location accounted for < 10% of the total variation associated with any ordination. Prior to partialling out covariation resulting from location and physiognomy, bird species ordinations were strongly correlated with tree species ordinations. The strength of association was reduced after partialling, but one bird and one tree axis remained significantly correlated. There was a significant species–area effect for birds, but not for trees. Main conclusions There was a significant relationship between bird species assemblages and tree species assemblages in the eastern forests of North America. Even after partialling out covariation associated with spatial location and forest physiognomy, there remained a significant correlation between major axes from bird and tree ordinations, consistent with the hypothesis that floristic variation is likely to be important in organizing assemblages of birds within a general biome type, albeit over a much larger spatial extent than originally predicted. Forest tree species ordinations differed from bird species ordinations in several ways: trees had a higher rate of turnover along underlying environmental gradients; trees appeared more patchily distributed than birds at this scale; and tree species were more spaced out along the underlying ecological gradients, with less overlap. By understanding the relationship between bird assemblages and forest floristics, we might better understand how avian communities are likely to change if tree species distributions are altered as a result of climatic changes.  相似文献   

10.
11.
Aims 1. To characterize ecosystem functioning by focusing on above‐ground net primary production (ANPP), and 2. to relate the spatial heterogeneity of both functional and structural attributes of vegetation to environmental factors and landscape structure. We discuss the relationship between vegetation structure and functioning found in Patagonia in terms of the capabilities of remote sensing techniques to monitor and assess desertification. Location Western portion of the Patagonian steppes in Argentina (39°30′ S to 45°27′ S). Methods We used remotely‐sensed data from Landsat TM and AVHRR/NOAA sensors to characterize vegetation structure (physiognomic units) and ecosystem functioning (ANPP and its seasonal and interannual variation). We combined the satellite information with floristic relevés and field estimates of ANPP. We built an empirical relationship between the Landsat TM‐derived normalized difference vegetation index (NDVI) and field ANPP. Using stepwise regressions we explored the relationship between ANPP and both environmental variables (precipitation and temperature surrogates) and structural attributes of the landscape (proportion and diversity of different physiognomic classes (PCs)). Results PCs were quite heterogeneous in floristic terms, probably reflecting degradation processes. Regional estimates of ANPP showed differences of one order of magnitude among physiognomic classes. Fifty percent of the spatial variance in ANPP was accounted for by longitude, reflecting the dependency of ANPP on precipitation. The proportion of prairies and semideserts, latitude and, to a lesser extent, the number of PCs within an 8 × 8 km cell accounted for an additional 33% of the ANPP variability. ANPP spatial heterogeneity (calculated from Landsat TM data) within an 8 × 8 km cell was positively associated with the mean AVHRR/NOAA NDVI and with the diversity of physiognomic classes. Main conclusions Our results suggest that the spatial and temporal patterns of ecosystem functioning described from ANPP result not only from water availability and thermal conditions but also from landscape structure (proportion and diversity of different PCs). The structural classification performed using remotely‐sensed data captured the spatial variability in physiognomy. Such capability will allow the use of spectral classifications to monitor desertification.  相似文献   

12.
Climate change is expected to cause geographic redistributions of species. To the extent that species within assemblages have different niche requirements, assemblages may no longer remain intact and dis‐ and reassemble at current or new geographic locations. We explored how climate change projected by 2100 may transform the world's avian assemblages (characterized at a 110 km spatial grain) by modeling environmental niche‐based changes to their dietary guild structure under 0, 500, and 2000 km‐dispersal distances. We examined guild structure changes at coarse (primary, high‐level, and mixed consumers) and fine (frugivores, nectarivores, insectivores, herbivores, granivores, scavengers, omnivores, and carnivores) ecological resolutions to determine whether or not geographic co‐occurrence patterns among guilds were associated with the magnitude to which guilds are functionally resolved. Dietary guilds vary considerably in their global geographic prevalence, and under broad‐scale niche‐based redistribution of species, these are projected to change very heterogeneously. A nondispersal assumption results in the smallest projected changes to guild assemblages, but with significant losses for some regions and guilds, such as South American insectivores. Longer dispersal distances are projected to cause greater degrees of disassembly, and lead to greater homogenization of guild composition, especially in northern Asia and Africa. This arises because projected range gains and losses result in geographically heterogeneous patterns of guild compensation. Projected decreases especially of primary and mixed consumers most often are compensated by increases in high‐level consumers, with increasing uncertainty about these outcomes as dispersal distance and degree of guild functional resolution increase. Further exploration into the consequences of these significant broad‐scale ecological functional changes at the community or ecosystem level should be increasingly on the agenda for conservation science.  相似文献   

13.
Orchid Island, 92  km off the southeast coast of Taiwan, has the northernmost tropical forests in East Asia. We assessed effects of habitat management by Orchid Island inhabitants, the Yami people, on spider diversity by comparing assemblages collected from the ground to canopy among four habitats (natural forest, cultivated woodland, second growth forest and grasslands) that receive different degrees of disturbance. Species and guild composition did not differ among replicates of habitat but differed significantly among habitats. Variation in spider diversity was inversely correlated with vegetation density. Cultivated woodland subjected to an intermediate level of disturbances had a lower understory vegetation density than natural forest, but higher spider diversity. Neither insect abundance nor biomass varied significantly among habitats suggesting little room for effects of prey availability on spider diversity. It appears that the Yami people maintain high spider diversity on Orchid Island by generating novel habitat types with different vegetation structures and disturbance regimes.  相似文献   

14.
Aim Urbanization is a leading threat to global biodiversity, yet little is known about how the spatial arrangement and composition of biophysical elements – buildings and vegetation – within a metropolitan area influence habitat selection. Here, we ask: what is the relative importance of the structure and composition of these elements on bird species across multiple spatial scales? Location The temperate metropolitan area of Cincinnati, Ohio, USA. Methods We surveyed breeding birds on 71 plots along an urban gradient. We modelled relative density for 48 bird species in relation to local woody vegetation composition and structure and to tree cover, grass cover and building density within 50–1000 m of each plot. We used an information‐theoretic approach to compare models and variables. Results At the proximate scale, native tree and understory stem frequency were the most important vegetation variables explaining bird distributions. Species’ responses to landscape biophysical features and spatial scales varied. Most native species responded positively to vegetation measures and negatively to building density. Models combining both local vegetation and landscape information represented best or competitive models for the majority of species, while models containing only local vegetation characteristics were rarely competitive. Smaller spatial scales (≤ 500 m) were most important for 36 species, and eight species had best models at larger scales (> 500 m); however, several species had competitive models across multiple scales. Main conclusions Habitat selection by birds within the urban matrix is the result of a combination of factors operating at both proximate and broader spatial scales. Efforts to manage and design urban areas to benefit native birds require both fine‐scale (e.g., individual landowners and landscape design) and larger landscape actions (e.g., regional comprehensive planning).  相似文献   

15.
Inference concerning the impact of habitat fragmentation on dispersal and gene flow is a key theme in landscape genetics. Recently, the ability of established approaches to identify reliably the differential effects of landscape structure (e.g. land-cover composition, remnant vegetation configuration and extent) on the mobility of organisms has been questioned. More explicit methods of predicting and testing for such effects must move beyond post hoc explanations for single landscapes and species. Here, we document a process for making a priori predictions, using existing spatial and ecological data and expert opinion, of the effects of landscape structure on genetic structure of multiple species across replicated landscape blocks. We compare the results of two common methods for estimating the influence of landscape structure on effective distance: least-cost path analysis and isolation-by-resistance. We present a series of alternative models of genetic connectivity in the study area, represented by different landscape resistance surfaces for calculating effective distance, and identify appropriate null models. The process is applied to ten species of sympatric woodland-dependant birds. For each species, we rank a priori the expectation of fit of genetic response to the models according to the expected response of birds to loss of structural connectivity and landscape-scale tree-cover. These rankings (our hypotheses) are presented for testing with empirical genetic data in a subsequent contribution. We propose that this replicated landscape, multi-species approach offers a robust method for identifying the likely effects of landscape fragmentation on dispersal.  相似文献   

16.
Aim We examined whether variation in species composition of breeding birds and resident butterflies in the Great Basin of North America depended on sampling grain (the smallest resolvable unit of study) and on the relative proximity of sampling units across the landscape. We also compared patterns between the two taxonomic groups with reference to their life‐history characteristics. Location Data for our analyses were collected from 1996 to 2003 in three adjacent mountain ranges in the central Great Basin (Lander and Nye counties, Nevada, USA): the Shoshone Mountains, Toiyabe Range and Toquima Range. Methods Data on species composition for both taxonomic groups were collecting using standard inventory methods for birds and butterflies in temperate regions. Data were compiled at three sampling grains, sites (average 12 ha), canyons (average 74 ha) and mountain ranges. For each sampling grain in turn, we calculated similarity of species composition using the Jaccard index. First, we investigated whether mean similarity of species composition among the three ranges differed as a function of the grain size at which data were compiled. Secondly, we explored whether mean similarity of species composition was greater for canyons within the same mountain range than for canyons within different mountain ranges. Thirdly, we examined whether mean similarity of species composition at the site level was different for sites within the same canyon, sites within different canyons in the same mountain range, and sites within canyons in different mountain ranges. We used a Bayesian model to analyse these comparisons. Results For both taxonomic groups, mean similarity of species composition increased as the sampling grain increased. The effect of spatial grain was somewhat greater for birds than for butterflies, especially when the intermediate sampling grain was compared with the smallest sampling grain. Similarity of species composition of butterflies at each sampling grain was greater than similarity of species composition of birds at the same grain. Mean similarity of species composition of both birds and butterflies at the canyon level and site level was affected by relative proximity of sampling locations; beta diversity increased as the relative isolation of sampling locations increased. Main conclusions The sensitivity of beta diversity to sampling grain likely reflects the effect of local environmental heterogeneity: as sampling grain increases, biotic assemblages appear more homogeneous. Although breeding birds in our study system have larger home ranges than resident butterflies, birds may have more specialized resource requirements related to vegetation structure and composition, especially at small sampling scales. The degree of variation in species composition of both taxonomic groups suggests that spatially extensive sampling will be more effective for drawing inferences about regional patterns of species diversity than intensive sampling at relatively few, smaller sites.  相似文献   

17.
Aims To validate the POLLSCAPE simulation model of pollen dispersal and deposition, and evaluate the effect of factors such as pollen productivity, wind speed and regional plant abundance, using a data set of ad 1800 pollen assemblages and historical land cover data. Location Denmark. Methods ad 1800 land cover from historical maps is digitized for 2000 m radii around 30 Danish lakes (3.5–33 ha). The simulation model POLLSCAPE is used to predict sedimentary pollen assemblages in the lakes from the plant abundance data inferred from these maps, with different model parameter settings for wind speed, pollen productivity, regional pollen loading, etc. The model predictions are compared with observed ad 1800 pollen assemblages from the lake sediment records. Furthermore, pollen productivity is estimated from the ad 1800 pollen and vegetation data using the Extended R‐value model. Results Generally the model reproduces the patterns in the observed pollen assemblages, and for most pollen types there are significant correlations between observed and predicted pollen proportions. The pollen proportions predicted by the POLLSCAPE model are sensitive to the pollen productivity estimates used, the regional background pollen loading and average wind speed. There is a difference in background pollen loading between eastern and western Denmark, especially of Calluna pollen. The fit between predicted and observed pollen assemblages is best at wind speeds around 2.5 m s?1, and decreases rapidly at lower wind speeds. The pollen productivity estimates from the ad 1800 data set are comparable with estimates from moss polsters in modern analogues of traditional cultural landscapes in Sweden and Norway. Main conclusions The POLLSCAPE model reproduces the patterns in the observed pollen assemblages from the lakes well, considering the uncertainty in the historical plant abundance data. This study indicates that the simulation model can be a useful tool for investigating relationships between vegetation and pollen composition, but also that the simulated pollen proportions are sensitive to the pollen productivity estimates, the regional background and to wind speed.  相似文献   

18.
Biogeographical history and current ecological interactions have usually been addressed separately to explain the spatial distribution of patterns of biodiversity. In this study, we evaluated the integrated effects of biogeographical and environmental factors in structuring the diurnal amphibian anuran assemblages of the upper Madeira River, southwestern Amazonia. We used a sampling design involving 98 standardized units, distributed across seven locations covering both banks of the river's course in the state of Rondônia, Brazil. We conducted searches for frogs in three campaigns between February 2010 and February 2011, aiming to: (1) evaluate the effect of the Madeira River as a biogeographic barrier at the species‐assemblage level, and (2) test the influence of seven environmental variables (vegetation structure, vegetation cover, soil nutrients, soil structure, slope, elevation, and distance from the river bank) on the spatial structure of the frog assemblages, separately on each riverbank. Thirteen species of diurnal frogs were recorded, six of which were restricted to one of the river margins. Multivariate analysis of variance indicated a significant effect of the river as a barrier. Multiple regression analyses suggested that the environmental variables structuring frog assemblages differ on either side of the river. We found that both historical elements (on a regional scale) and environmental factors (at a local scale) shaped the occurrence and distribution of frog species in the study area.  相似文献   

19.
Most land on Earth has been changed by humans and past changes of land can have lasting influences on current species assemblages. Yet few globally representative studies explicitly consider such influences even though auxiliary data, such as from remote sensing, are readily available. Time series of satellite‐derived data have been commonly used to quantify differences in land‐surface attributes such as vegetation cover, which will among other things be influenced by anthropogenic land conversions and modifications. Here we quantify differences in current and past (up to five years before sampling) vegetation cover, and assess whether such differences differentially influence taxonomic and functional groups of species assemblages between spatial pairs of sites. Specifically, we correlated between‐site dissimilarity in photosynthetic activity of vegetation (the enhanced vegetation index) with the corresponding dissimilarity in local species assemblage composition from a global database using a common metric for both, the Bray–Curtis index. We found that dissimilarity in species assemblage composition was on average more influenced by dissimilarity in past than current photosynthetic activity, and that the influence of past dissimilarity increased when longer time periods were considered. Responses to past dissimilarity in photosynthetic activity also differed among taxonomic groups (plants, invertebrates, amphibians, reptiles, birds and mammals), with reptiles being among the most influenced by more dissimilar past photosynthetic activity. Furthermore, we found that assemblages dominated by smaller and more vegetation‐dependent species tended to be more influenced by dissimilarity in past photosynthetic activity than prey‐dependent species. Overall, our results have implications for studies that investigate species responses to current environmental changes and highlight the importance of past changes continuing to influence local species assemblage composition. We demonstrate how local species assemblages and satellite‐derived data can be linked and provide suggestions for future studies on how to assess the influence of past environmental changes on biodiversity.  相似文献   

20.
Modelling chorotypes of invasive vertebrates in mainland Spain   总被引:1,自引:1,他引:0  
We investigated the existence of chorotypes – assemblages of species with similar geographical ranges – of invasive species in a host territory, and their potential use to advocate similar control or management strategies for species in the same chorotype. We analysed the distribution of 13 exotic terrestrial vertebrate species (six birds, six mammals, and one reptile) with well‐known distributions in mainland Spain. We used the presence/absence data on a grid of 10 km × 10 km UTM cells from the Atlases of terrestrial vertebrates of Spain. These data were aggregated to a grid of 50 km × 50 km UTM cells, because it entailed no loss of meaningful information and allowed dealing with a much lower number of cells. Using cluster analysis and a probabilistic assessment of the classification, we identified seven significant chorotypes: four multispecific and three monospecific. The compound chorotypes grouped together species that tended to share certain characteristics about their introduction, release cause, establishment, and spread. We modelled the chorotypes using a favourability function based on a generalized linear model and 31 variables related to spatial situation, topography, lithology, climatic stability, energy availability, water availability, disturbances, productivity, and human activity. Climatic factors affected the favourability for every chorotype, whereas human variables had a high influence in the distribution of three chorotypes involving eight species. On the basis of these variables, we identified favourable areas for all the chorotypes in mainland Spain. The favourability for a chorotype in an area may be a useful criterion for evaluating the local conservation concern due to the whole set of species. Favourable but unoccupied areas can be used to infer possible colonization areas for each chorotype. We recommend using chorotypes to optimize broad‐scale surveillance of invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号