首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We have constructed a physical map of the mtDNA of Tetrahymena pyriformis strain ST using the restriction endonucleases EcoRI, PstI, SacI, HindIII and HhaI. 2. Hybridization of mitochondrial 21 S and 14 S ribosomal RNA to restriction fragments of strain ST mtDNA shows that this DNA contains two 21-S and only one 14-S ribosomal RNA genes. By S1 nuclease treatment of briefly renatured single-stranded DNA the terminal duplication-inversion previously detected in this DNA (Arnberg et al. (1975) Biochim. Biophys. Acta 383, 359--369) has been isolated and shown to contain both 21-S ribosomal RNA genes. 14 S ribosomal RNA hybridizes to a region in the central part of the DNA, about 8000 nucleotides or 20% of the total DNA length apart from the nearest 21 S ribosomal RNA gene. 3. We have confirmed this position of the three ribosomal RNA genes by electron microscopical analysis of DNA . RNA hybrid molecules and R-loop molecules. 4. Hybridization of 21 S ribosomal RNA with duplex mtDNA digested either with phage lambda-induced exonuclease or exonuclease III of Escherichia coli, shows that the 21-S ribosomal RNA genes are located on the 5'-ends of each DNA strand. Electron microscopy of denaturated mtDNA hybridized with a mixture of 14-S and 21-S ribosomal RNAs show that the 14 S ribosomal RNA gene has the same polarity as the nearest 21 S ribosomal RNA gene. 5. Tetrahymena mtDNA is (after Saccharomyces mtDNA) the second mtDNA in which the two ribosomal RNA cistrons are far apart and the first mtDNA in which one of the ribosomal RNA cistrons is duplicated.  相似文献   

2.
1. Electron micrographs of the linear mtDNA from Tetrahymena pyriformis strain GL show linear molecules with a duplex 'eye' of variable size in the middle. This indicates that replication of this DNA starts near the middle of the molecule and proceeds bidirectionally to the ends, as previously shown for the mtDNA of strain ST (Arnberg, A.C., Van Bruggen, E.F.J., Clegg, R.A., Upholt, W.B. and Borst, P. (1974) Biochim. Biophys. Acta 361, 266-276). The mtDNAs of these two strains have little base sequence homology beyond the ribosomal RNA cistron (Goldbach, R.W., Bollen-De Boer, J.E., Van Bruggen, E.F.J. and Borst, P. (1978) Biochim. Biophys. Acta 521, 187-197). 2. Electron micrographs of mtDNA from strain ST, spread under non-denaturing conditions, contain only molecules with fully duplex ends. mtDNA spread under conditions of early denaturation contains duplex loops on one end (40% of all molecules) or both ends (37%). The loops are stable to partial denaturation and vary in size from 0.15 to approximately 1.0 micron, most loops measuring 0.25--0.40 micron. No loops are formed with single-stranded DNA under analogous conditions and we conclude from this result that loop formation is based on the presence of straight, rather than inverted, duplications near the ends. 3. When full-length 3H-labelled mtDNA from strain ST, 32P-labelled at the 5'-termini with T4 polynucleotide kinase, was sedimented in alkaline sucrose gradients, greater than 70% of the 3H and less than 30% of the 32P cosedimented with full-length molecules; the remaining 32P sedimented heterogeneously and predominantly with the DNA less than 10% the size of intact single strands. Brief incubations of full-length mtDNA with DNA polymerase I from Escherichia coli and labelled dNTPs at 15 degrees C did not lead to preferential labelling of terminal EcoRI fragments of the DNA. From these results we infer that the DNA contains nicks or gaps near the termini and that these are not bordered by free 3'-OH groups. 4. A model is presented in which straight sequence repetitions at the termini of Tetrahymena pyriformis mtDNA are involved in the later stages of replication. This model can also account for the pronounced terminal heterogeneity previously observed in this DNA.  相似文献   

3.
Hybridization of purified, 32p-labeled 5.8S ribosomal RNA from Xenopus laevis to fragments generated from X. laevis rDNA by the restriction endonuclease, EcoRI, demonstrates that the 5.8S rRNA cistron lies within the transcribed region that links the 18S and 28S rRNA cistrons.  相似文献   

4.
In this paper we present the results of a Monte Carlo study of the effects of protein, cholesterol, bilayer curvature, and mobility on the chain order parameters of a lipid layer. The Monte Carlo method used is identical to the version developed earlier (Scott, Jr., H.L. (1977) Biochim. Biophys. Acta 469, 264–271). Simulations of protein and cholesterol effects are accomplished by insertion of a rigid stationary cylinder into the lipid matrix. The protein studies show the presence of boundary lipid (Jost, P., Griffith, O.H., Capaldi, R.H. and Vanderkooi, G. (1973) Biochim. Biophys. Acta 311, 141–152). The effect of cholesterol is dependent upon the length of the lipid hydrocarbon chains relative to the cholesterol depth of penetration. Our computer studies of bilayer curvature show the manner in which this curvature disrupts chain packing and are consistent with experimental results (Chrzeszczyk, A., Wishnia, A. and Springer, C.S. (1977) Biochim. Biophys. Acta, 470, 161–171). We also find that restricting lateral motion in chains, the simplest manner in which head group interactions can affect hydrocarbon chain order, does not measurably alter the order parameters. We argue that this provides some support for an earlier hypothesis by Scott (Scott, Jr., H.L. (1975) Biochim. Biophys. Acta 406, 329–346) regarding head group-chain interaction in monolayer experiments.  相似文献   

5.
Deoxyribonucleic acid (DNA)-ribonucleic acid (RNA) hybrids are formed by Escherichia coli 16S or 23S ribosomal RNA or pulse-labeled RNA with the DNA of various species of the Enterobacteriaceae. The relative extent of hybrid formation is always greater for ribosomal RNA. These DNA-RNA hybrids have been further characterized by their stability to increasing temperature, and, in every case, the stability of pulse-labeled RNA hybrids was lower than that of the corresponding ribosomal RNA hybrids, although 16S and 23S ribosomal RNA hybrids had very similar stabilities. Therefore, ribosomal RNA showed a greater degree of apparent conservation in base sequence than pulse-labeled or messenger RNA both in the extent of cross-reaction and in the stability of hybrid structures. Similar results were obtained with Myxococcus xanthus RNA. Since in this case the base composition of the pulse-labeled or messenger RNA is richer in guanine plus cytosine than ribosomal RNA, the higher cross-reaction of ribosomal RNA is more readily attributable to conservation of base sequence in these cistrons than to its base composition. Thus, the base sequence of ribosomal RNA cistrons of bacilli, enteric bacteria, and myxobacteria is conserved relative to those of the rest of the genomes. This conservation is, however, not absolute since the stability of heterologous ribosomal RNA hybrids is always lower than that of homologous hybrids.  相似文献   

6.
A comparative study has been made of the arrangement of base sequences in the ribosomal RNA cistrons of Escherichia coliand rabbit DNA. This was accomplished by examination of the thermal stability profiles of DNA/RNA hybrids formed by the two types of ribosomal RNA under various conditions. The thermal stabilities of ribosomal RNA hybrids of rabbit origin are more dependent on the conditions of reaction during the formation and are always lower than those of E. coli RNA. It is concluded that the rabbit ribosomal RNA hybrids are formed mainly from mismatching between RNA molecules and DNA sites other than those from which they were transcribed. Thus, the cluster of ribosomal RNA cistrons in a mammalian DNA, representing a historical series of tandem duplications, exhibits intercistronic base sequence divergence. This research was supported by a research grant from the National Science Foundation (GB 6099) and a predoctoral traineeship (to R.L.M.) from the U.S. Public Health Service.  相似文献   

7.
The arrangement of the DNA sequences coding for the ribosomal 5.8 S RNA in the genome of Xenopus laevis has been studied. In Xenopus the 5.8 S cistrons, like the ribosomal 28 S and 18 S cistrons, are reiterated some 600-fold (Clarkson et al., 1973a). When banded in caesium chloride, the 5.8 S cistrons separate from somatic DNA of high molecular weight and band as a distinct satellite, indicating a clustered arrangement in the genome. The buoyant density of this satellite (1.723 g cm?3) corresponds to that of the ribosomal DNA satellite.It has previously been shown that the ribosomal DNA sequences have been deleted from the genome of the anucleotide Xenopus mutant. Our findings, first that the anucleolate mutant does not synthesize 5.8 S RNA and second that somatic DNA from this mutant does not detectably hybridize with 5.8 S RNA, demonstrate that the 5.8 S cistronic complement has been similarly deleted. This finding supports our contention that 5.8 S sequences are clustered on chromosomal DNA and further suggests that they are located close to or within the rDNA complements in the nucleolus organizer region.Pre-hybridization to saturation with unlabelled 5.8 S RNA results in only a slight increase in the buoyant density of denatured 5.8 S coding sequences from low molecular weight DNA. Since a contiguous arrangement of the 5.8 S sequences would give rise to a much larger increase in density, it follows that, although clustered, the sequences must be intercalated within stretches of other DNA. By contrast, pre-hybridization of the somatic DNA with unlabelled 28 S or 18 S ribosomal RNAs results in large shifts in the buoyant density of the 5.8 S sequences. These shifts indicate that the 5.8 S sequences are closely linked to both 28 S and 18 S coding sequences.It is concluded that the 5.8 S cistrons are interspersed along the ribosomal DNA sense strand and that each is located together with a 28 S and an 18 S cistron in a ribosomal repeat unit. Estimates, obtained from the pre-hybridization experiments, of the separations between the 5.8 S and the 28 S and 18 S sequences, are combined in a model of the ribosomal repeat unit. In this model the 5.8 S cistron is located within the transcribed spacer which links the 28 S and 18 S coding sequences.  相似文献   

8.
We have analysed the structure of the mtDNAs of six amicronucleate Tetrahymena pyriformis strains, belonging to at least four phenosets, as defined by Borden et al. (Borden, D., Whitt, G.S. and Nanney, D.L. (1973) J. Protozool. 20, 693--700). 2. The mtDNAs of all strains are linear, but they differ in size, in their fragmentation by endonuclease EcoRI and in overall sequence; less than 20% sequence homology was found by DNA-DNA hybridization in all combinations tested, except for the mtDNAs from strains T and ST which are indistinguishable. 3. In spite of these marked sequence differences the mtDNAs of all strains share two structural peculiarities: ragged (gnawed) duplex ends and a duplication-inversion, which varies in length between 0.3 and 1.2 micrometer, depending on the strain. In four strains the duplication-inversion is terminal, allowing formation of single-stranded DNA circles with a duplex tail; in two strains it is subterminal. 4. The ragged ends and sub-terminal position of the duplication-inversion in some of the Tetrahymena mtDNAs do not fit any of the current models for the replication of linear mtDNAs.  相似文献   

9.
10.
Crude tRNA isolated from rat liver by the method of Rogg et al. (Biochem. Biophys. Acta 195, 13-15 1969) contains N6-dimethyladenosine (m6-2A) and was therefore fractionated in order to identify the m6-2A-containing RNAs. A unique species of RNA was purified which contained all the m62A present in the crude tRNA. Sequence analysis by postlabeling with gamma-32p-ATP and polynucleotide kinase revealed that this RNA represents the 32 nucleotides AAGGUUUC(C)U GUAGGUGm62Am62ACCUGCGGAAGGAUC from position 5 to 36 of the 3' terminus of ribosomal 18S RNA. The 36 nucleotide long sequence from the 3' end of rat liver 18S rRNA exhibits extensive homology with the corresponding sequence of E. coli 16S rRNA and with the 21 nucleotide long 3' terminal sequence so far known from Saccharomyces carlsbergensis 17S rRNA. A heterogeneity in this sequence provides the first evidence on the molecular level for the existence of (at least) two sets of redundant ribosomal 18S RNA genes in the rat.  相似文献   

11.
Additional experiments with homologous as well as heterologous hybridization confirmed our previous finding in Sciara coprophila that XX females have nearly twice the number of ribosomal RNA cistrons as XO males. A comparison between two different X' chromosomes revealed that only the one carrying the irradiation-induced Wavy mutation has a deletion of 70% of its ribosomal RNA cistrons as compared to the standard X. The deletion is relatively stable, and the remaining ribosomal RNA cistrons donot appear to undergo disproportionate replication or magnification as in Drosophila. Homologous hybridization experiments revealed an unusually low reiteration of ribosomal RNA cistrons in this fly, 45 gene copies per X chromosome. The question is raised as to whether such a low number of cistrons may be related to the unusual nucleolar condition encountered in the Sciaridae.  相似文献   

12.
Ribosomal RNA genes in Mycoplasma   总被引:23,自引:3,他引:20       下载免费PDF全文
Using Southern blotting analysis with labelled mycoplasmal ribosomal RNA as probe, two fragments (1 Kb and 5 Kb) were detected in an EcoR I digest of Mycoplasma capricolum DNA. This analysis revealed that the 5 Kb fragment carries both 16S rRNA sequences and the entire 23S rRNA gene of this mycoplasma. The 1 Kb fragment contains 16S rRNA sequences only. The 5 Kb EcoR I fragment has been cloned and used to characterize the structure of rRNA cistrons in various Mycoplasma strains. These experiments clearly demonstrate a substantial homology of Mycoplasma capricolum rRNA sequences with the E. coli rRNA cistron on one hand, and with Mycoplasma mycoides subsp. capri and Acholeplasma laidlawii on the other hand. This analysis also reveals two rRNA cistrons in Mycoplasma mycoides subsp. capri and Acholeplasma laidlawii whereas one rRNA cistron is present in Mycoplasma capricolum.  相似文献   

13.
In contrast to expectation (Srinivasan, S. and Jaspars, E.M.J. (1978) Biochim. Biophys. Acta 520, 237-241) differentiated thermal melting profiles and fluorescence measurements show that the coat protein of alfalfa mosaic virus has a negligible effect on the base-paired structure of isolated 3'-terminal fragments (length about 90 nucleotides) of the coat protein messenger RNA (RNA 4) of this virus.  相似文献   

14.
The structure of a ribosomal protein S8/spc operon mRNA complex   总被引:2,自引:0,他引:2  
In bacteria, translation of all the ribosomal protein cistrons in the spc operon mRNA is repressed by the binding of the product of one of them, S8, to an internal sequence at the 5' end of the L5 cistron. The way in which the first two genes of the spc operon are regulated, retroregulation, is mechanistically distinct from translational repression by S8 of the genes from L5 onward. A 2.8 A resolution crystal structure has been obtained of Escherichia coli S8 bound to this site. Despite sequence differences, the structure of this complex is almost identical to that of the S8/helix 21 complex seen in the small ribosomal subunit, consistent with the hypothesis that autogenous regulation of ribosomal protein synthesis results from conformational similarities between mRNAs and rRNAs. S8 binding must repress the translation of its own mRNA by inhibiting the formation of a ribosomal initiation complex at the start of the L5 cistron.  相似文献   

15.
16.
The M component of virginiamycin blocks protein synthesis by inactivating catalytically the 50 S ribosomal subunits: the in vitro interaction of 50 S with virginiamycin M, followed by removal of the antibiotic, results in a lasting damage of the particle. This enzyme-like inactivation of 50 S subunits resembles that of 30 S subunits by colicin E3, which entails the cleavage of 16 S rRNA. To explore this possibility, rRNA obtained from particles incubated in vivo and in vitro with virginiamycin M were analyzed. Electrophoretic analysis of 5, 16 and 23 S rRNA did not reveal major changes, nor did it show the appearance of additional fragments. To exclude the possibility of terminal alterations, the 5'- and 3'-extremities of these RNA were also sequenced and found unchanged. Conclusions drawn in the present work parallel those of an accompanying paper (Moureau, P., Di Giambattista, M. and Cocito, C. (1983) Biochim. Biophys. Acta 739, 164-172) describing the dissociation and reassociation of ribosomes incubated with virginiamycin M: the lasting ribosome damage by this antibiotic appears to be due to a conformational rather than to a structural alteration.  相似文献   

17.
18.
Physarum polycephalum has been used as a model system to study the phosphorylation of ribosomal proteins during the cell cycle. The results showed that the phosphate content of S3, the major ribosomal phosphoprotein in this organism, was constant during all phases of the cell cycle. No additional ribosomal phosphoproteins were observed. These results differ significantly from those reported earlier by Rupp, R.G., Humphrey, R.M. and Shaeffer, J.R. (Biochim. Biophys. Acta (1976) 418, 81-92) and suggest that the use of thymidine or hydroxyurea to synchronize cell population may affect the phosphorylation of ribosomal proteins. The results are discussed in relation to protein synthesis and cAMP level during the cell cycle.  相似文献   

19.
20.
This report describes the partial purification and the characteristics of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from an amphibian source. Toad kidney microsomes were solubilized with sodium deoxycholate and further purified by sodium dodecyl sulphate treatment and sucrose gradient centrifugation, according to the methods described by Lane et al. [(1973) J. Biol. Chem. 248, 7197--7200], J?rgensen [(1974) Biochim. Biophys. Acta 356, 36--52] and Hayashi et al. [(1977) Biochim. Biophys. Acta 482, 185--196]. (Na+ + K+)-ATPase preparations with specific activities up to 1000 mumol Pi/mg protein per h were obtained. Mg2+-ATPase only accounted for about 2% of the total ATPase activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed three major protein bands with molecular weights of 116 000, 62 000 and 26 000. The 116 000 dalton protein was phosphorylated by [gamma-32P]ATP in the presence of sodium but not in the presence of potassium. The 62 000 dalton component stained for glycoproteins. The Km for ATP was 0.40 mM, for Na+ 12.29 mM and for K+ 1.14 mM. The Ki for ouabain was 35 micron. Temperature activation curves showed two activity peaks at 37 degrees C and at 50 degrees C. The break in the Arrhenius plot of activity versus temperature appeared at 15 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号