首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomal triglyceride transfer protein (MTP) transfers lipids to apolipoprotein B (apoB) within the endoplasmic reticulum, a process that involves direct interactions between apoB and the large subunit of MTP. Recent studies with heterozygous MTP knockout mice have suggested that half-normal levels of MTP in the liver reduce apoB secretion. We hypothesized that reduced apoB secretion in the setting of half-normal MTP levels might be caused by a reduced MTP:apoB ratio in the endoplasmic reticulum, which would reduce the number of apoB-MTP interactions. If this hypothesis were true, half-normal levels of MTP might have little impact on lipoprotein secretion in the setting of half-normal levels of apoB synthesis (since the ratio of MTP to apoB would not be abnormally low) and might cause an exaggerated reduction in lipoprotein secretion in the setting of apoB overexpression (since the MTP:apoB ratio would be even lower). To test this hypothesis, we examined the effects of heterozygous MTP deficiency on apoB metabolism in the setting of normal levels of apoB synthesis, half-normal levels of apoB synthesis (heterozygous Apob deficiency), and increased levels of apoB synthesis (transgenic overexpression of human apoB). Contrary to our expectations, half-normal levels of MTP reduced the plasma apoB100 levels to the same extent ( approximately 25-35%) at each level of apoB synthesis. In addition, apoB secretion from primary hepatocytes was reduced to a comparable extent at each level of apoB synthesis. Thus, these results indicate that the concentration of MTP within the endoplasmic reticulum rather than the MTP:apoB ratio is the critical determinant of lipoprotein secretion. Finally, we found that heterozygosity for an apoB knockout mutation lowered plasma apoB100 levels more than heterozygosity for an MTP knockout allele. Consistent with that result, hepatic triglyceride accumulation was greater in heterozygous apoB knockout mice than in heterozygous MTP knockout mice.  相似文献   

2.
Due to the absence of microsomal triglyceride transfer protein (MTP), Chinese hamster ovary (CHO) cells lack the ability to translocate apoB into the lumen of the endoplasmic reticulum, causing apoB to be rapidly degraded by an N-acetyl-leucyl-leucyl-norleucinal-inhibitable process. The goal of this study was to examine if expression of MTP, whose genetic deletion is responsible for the human recessive disorder abetalipoproteinemia, would recapitulate the lipoprotein assembly pathway in CHO cells. Unexpectedly, expression of MTP mRNA and protein in CHO cells did not allow apoB-containing lipoproteins to be assembled and secreted by CHO cells expressing apoB53. Although expression of MTP in cells allowed apoB to completely enter the endoplasmic reticulum, it was degraded by a proteolytic process that was inhibited by dithiothreitol (1 mM) and chloroquine (100 microM), but resistant to N-acetyl-leucyl-leucyl-norleucinal. In marked contrast, coexpression of the liver-specific gene product cholesterol 7alpha-hydroxylase with MTP resulted in levels of MTP lipid transfer activity that were similar to those in mouse liver and allowed intact apoB53 to be secreted as a lipoprotein particle. These data suggest that, although MTP-facilitated lipid transport is not required for apoB translocation, it is required for the secretion of apoB-containing lipoproteins. We propose that, in CHO cells, MTP plays two roles in the assembly and secretion of apoB-containing lipoproteins: 1) it acts as a chaperone that facilitates apoB53 translocation, and 2) its lipid transfer activity allows apoB-containing lipoproteins to be assembled and secreted. Our results suggest that the phenotype of the cell (e.g. expression of cholesterol 7alpha-hydroxylase by the liver) may profoundly influence the metabolic relationships determining how apoB is processed into lipoproteins and/or degraded.  相似文献   

3.
Although microsomal triglyceride transfer protein (MTP) and newly synthesized triglyceride (TG) are critical for co-translational targeting of apolipoprotein B (apoB100) to lipoprotein assembly in hepatoma cell lines, their roles in the later stages of lipoprotein assembly remain unclear. Using N-acetyl-Leu-Leu-norleucinal to prevent proteasomal degradation, HepG2 cells were radiolabeled and chased for 0-90 min (chase I). The medium was changed and cells chased for another 150 min (chase II) in the absence (control) or presence of Pfizer MTP inhibitor CP-10447 (CP). As chase I was extended, inhibition of apoB100 secretion by CP during chase II decreased from 75.9% to only 15% of control (no CP during chase II). Additional studies were conducted in which chase I was either 0 or 90 min, and chase II was in the presence of [(3)H]glycerol and either BSA (control), CP (inhibits both MTP activity and TG synthesis),BMS-1976360-1) (BMS) (inhibits only MTP activity), or triacsin C (TC) (inhibits only TG synthesis). When chase I was 0 min, CP, BMS, and TC reduced apoB100 secretion during chase II by 75.3, 73.9, and 53.9%. However, when chase I was 90 min, those agents reduced apoB100 secretion during chase II by only 16.0, 19.2, and 13.9%. Of note, all three inhibited secretion of newly synthesized TG during chase II by 80, 80, and 40%, whether chase I was 0 or 90 min. In both HepG2 cells and McA-RH7777 cells, if chase I was at least 60 min, inhibition of TG synthesis and/or MTP activity did not affect the density of secreted apoB100-lipoproteins under basal conditions. Oleic acid increased secretion of TG-enriched apoB100-lipoproteins similarly in the absence or presence of either of CP, BMS, or TC. We conclude that neither MTP nor newly synthesized TG is necessary for the later stages of apoB100-lipoprotein assembly and secretion in either HepG2 or McA-RH7777 cells.  相似文献   

4.
Rava P  Hussain MM 《Biochemistry》2007,46(43):12263-12274
Microsomal triglyceride transfer protein (MTP) is essential for the assembly of neutral-lipid-rich apolipoprotein B (apoB) lipoproteins. Previously we reported that the Drosophila MTP transfers phospholipids but does not transfer triglycerides. In contrast, human MTP transfers both lipids. To explore the acquisition of triglyceride transfer activity by MTP, we evaluated amino acid sequences, protein structures, and the biochemical and cellular properties of various MTP orthologues obtained from species that diverged during evolution. All MTP orthologues shared similar secondary and tertiary structures, associated with protein disulfide isomerase, localized to the endoplasmic reticulum, and supported apoB secretion. While vertebrate MTPs transferred triglyceride, invertebrate MTPs lacked this activity. Thus, triglyceride transfer activity was acquired during the transition from invertebrates to vertebrates. Within vertebrates, fish, amphibians, and birds displayed 27%, 40%, and 100% triglyceride transfer activity compared to mammals. We conclude that MTP triglyceride transfer activity first appeared in fish and speculate that the acquisition of triglyceride transfer activity by MTP provided for a significant advantage in the evolution of larger and more complex organisms.  相似文献   

5.
The assembly and secretion of triglyceride-rich lipoproteins in vertebrates requires apolipoprotein B (apoB) and the endoplasmic reticulum-localized cofactor, microsomal triglyceride transfer protein (MTP). Invertebrates, particularly insects, transport the majority of their neutral and polar lipids in lipophorins; however, the assembly of lipophorin precursor particles was presumed to be MTP-independent. A Drosophila melanogaster expressed gene sequence (CG9342), displaying 23% identity with human MTP, was recently identified. When coexpressed in COS cells, CG9342 promoted the assembly and secretion of apoB34 and apoB41 (N-terminal 34 and 41% of human apoB). The apoB34-containing particles assembled by human MTP and CG9342 displayed similar peak densities of approximately 1.169 g/ml and similar lipid compositions. However, CG9342 displayed differential sensitivities to two inhibitors of human MTP and low vesicle-based lipid transfer activity, in vitro. In addition, important predicted structural distinctions exist between the human and Drosophila proteins suggesting overlapping but not identical functional roles. We conclude that CG9342 and human MTP are orthologs that share only a subset of functions, consistent with known differences in intracellular and extracellular aspects of vertebrate and invertebrate lipid transport and metabolism.  相似文献   

6.
The assembly and secretion of apolipoprotein B-containing lipoproteins.   总被引:14,自引:0,他引:14  
The assembly of lipoproteins containing apolipoprotein B is a complex process that occurs in the lumen of the secretory pathway. The process consists of two relatively well-identified steps. In the first step, two VLDL precursors are formed simultaneously and independently: an apolipoprotein B-containing VLDL precursor (a partially lipidated apolipoprotein B) and a VLDL-sized lipid droplet that lacks apolipoprotein B. In the second step, these two precursors fuse to form a mature VLDL particle. The apolipoprotein B-containing VLDL precursor is formed during the translation and concomitant translocation of the protein to the lumen of the endoplasmic reticulum. The VLDL precursor is completed shortly after the protein is fully synthesized. The process is dependent on the microsomal triglyceride transfer protein (MTP). Although the mechanism by which the lipid droplets are formed is unknown, recent observations indicate that the process is dependent on MTP. The fusion of the two precursors is not dependent on MTP, but the mechanism remains to be elucidated. The conversion of the apolipoprotein B-containing precursor to VLDL seems to be dependent on the ADP ribosylation factor 1 (ARF 1) and its activation of phospholipase D. During their assembly, nascent apolipoprotein B chains undergo quality control and are sorted to degradation. Such sorting, which occurs cotranslationally during the formation of the apolipoprotein B-containing precursor, involves cytosolic chaperons and ubiquitination that targets apolipoprotein B to proteasomal degradation. Other levels of sorting occur in the secretory pathway. Thus, lysosomal enzymes are involved as well as the LDL receptor.  相似文献   

7.
Dashti N  Gandhi M  Liu X  Lin X  Segrest JP 《Biochemistry》2002,41(22):6978-6987
Apolipoprotein (apo) B, the major protein component of the atherogenic low-density lipoprotein (LDL), has a pentapartite structure, NH2-betaalpha1-beta1-alpha2-beta2-alpha3-COOH, the beta domains containing multiple amphipathic beta strands and the alpha domains containing multiple amphipathic alpha helixes. We recently reported that the first 1000 residues of human apoB-100 have sequence and amphipathic motif homologies to the lipid-pocket of lamprey lipovitellin (LV) [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416]. The lipid-pocket of LV is a small triangular space lined by three antiparallel amphipathic beta sheets, betaA, betaB, and betaD. The betaA and betaB sheets are joined together by an antiparallel alpha helical bundle, alpha domain. We proposed [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416] that formation of a LV-like lipid-pocket is necessary for lipid-transfer to apoB-containing lipoprotein particles and that this pocket is formed by association of the region of the betaalpha1 domain homologous to the betaA and betaB sheets of LV with a betaD-like amphipathic beta sheet from microsomal triglyceride transfer protein (MTP). To test this hypothesis, we generated four truncated cDNA constructs terminating at or near the juncture of the betaalpha1 and beta1 domains: Residues 1-800 (apoB:800), 1-931 (apoB:931), 1-1000 (apoB:1000), and 1-1200 (apoB:1200). Characterization of particles secreted by stable transformants of the McA-RH7777 cell line demonstrated that (i) ApoB:800, missing the betaB domain, was secreted as a lipid-poor aggregate. (ii) ApoB:931, containing most, but not all, of the betaB domain, was secreted as lipid-poor particles unassociated with MTP. (iii) ApoB:1000, containing the entire betaB domain, was secreted as a relatively lipid-rich particle associated hydrophobically with MTP. (iv) ApoB:1200, containing the betaalpha1 domain plus 200 residues of the beta1 domain, was secreted predominantly as a lipid-poor particle but also as a minor relatively lipid-rich, MTP-associated particle. We thus have captured an intermediate in apoB-containing particle assembly, a lipid transfer competent pocket formed by association of the complete betaalpha1 domain of apoB with MTP.  相似文献   

8.
9.
We previously demonstrated that the N-terminal 1000 amino acid residues of human apolipoprotein (apo) B (designated apoB:1000) are competent to fold into a three-sided lipovitellin-like lipid binding cavity to form the apoB "lipid pocket" without a structural requirement for microsomal triglyceride transfer protein (MTP). Our results established that this primordial apoB-containing particle is phospholipid-rich (Manchekar, M., Richardson, P. E., Forte, T. M., Datta, G., Segrest, J. P., and Dashti, N. (2004) J. Biol. Chem. 279, 39757-39766). In this study we have investigated the putative functional role of MTP in the initial lipidation of apoB:1000 in stable transformants of McA-RH7777 cells. Inhibition of MTP lipid transfer activity by 0.1 microm BMS-197636 and 5, 10, and 20 microm of BMS-200150 had no detectable effect on the synthesis, lipidation, and secretion of apoB:1000-containing particles. Under identical experimental conditions, the synthesis, lipidation, and secretion of endogenous apoB100-containing particles in HepG2 and parental untransfected McA-RH7777 cells were inhibited by 86-94%. BMS-200150 at 40 microm nearly abolished the secretion of endogenous apoB100-containing particles in HepG2 and parental McA-RH cells but caused only 15-20% inhibition in the secretion of apoB: 1000-containing particles. This modest decrease was attributable to the nonspecific effect of a high concentration of this compound on hepatic protein synthesis, as reflected in a similar (20-25%) reduction in albumin secretion. Suppression of MTP gene expression in stable transformants of McA-RH7777 cells by micro-interfering RNA led to 60-70% decrease in MTP mRNA and protein levels, but it had no detectable effect on the secretion of apoB:1000. Our results provide a compelling argument that the initial addition of phospholipids to apoB:1000 and initiation of apoB-containing lipoprotein assembly occur independently of MTP lipid transfer activity.  相似文献   

10.
Therapeutic agents that suppress apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) levels/activity are being developed in the clinic to benefit patients who are unable to reach target LDL-C levels with maximally tolerated lipid-lowering drugs. To compare and contrast the metabolic consequences of reducing these targets, murine-specific apoB or MTP antisense oligonucleotides (ASOs) were administered to chow-fed and high fat-fed C57BL/6 or to chow-fed and Western diet-fed LDLr−/− mice for periods ranging from 2 to 12 weeks, and detailed analyses of various factors affecting fatty acid metabolism were performed. Administration of these drugs significantly reduced target hepatic mRNA and protein, leading to similar reductions in hepatic VLDL/triglyceride secretion. MTP ASO treatment consistently led to increases in hepatic triglyceride accumulation and biomarkers of hepatotoxicity relative to apoB ASO due in part to enhanced expression of peroxisome proliferator activated receptor γ target genes and the inability to reduce hepatic fatty acid synthesis. Thus, although both drugs effectively lowered LDL-C levels in mice, the apoB ASO produced a more positive liver safety profile.  相似文献   

11.
The conserved zona pellucida (ZP) domain is found in hundreds of extracellular proteins that are expressed in various organs and play a variety of roles as structural components, receptors and tumor suppressors. A liver-specific zona pellucida domain-containing protein (LZP), also named OIT3, has been shown to be mainly expressed in human and mouse hepatocytes; however, the physiological function of LZP in the liver remains unclear. Here, we show that Lzp deletion inhibited very low-density lipoprotein (VLDL) secretion, leading to hepatic TG accumulation and lower serum TG levels in mice. The apolipoprotein B (apoB) levels were significantly decreased in the liver, serum, and VLDL particles of LZP-deficient mice. In the presence of LZP, which is localized to the endoplasmic reticulum (ER) and Golgi apparatus, the ER-associated degradation (ERAD) of apoB was attenuated; in contrast, in the absence of LZP, apoB was ubiquitinated by AMFR, a known E3 ubiquitin ligase specific for apoB, and was subsequently degraded, leading to lower hepatic apoB levels and inhibited VLDL secretion. Interestingly, hepatic LZP levels were elevated in mice challenged with a high-fat diet and humans with simple hepatic steatosis, suggesting that LZP contributes to the physiological regulation of hepatic TG homeostasis. In general, our data establish an essential role for LZP in hepatic TG transportation and VLDL secretion by preventing the AMFR-mediated ubiquitination and degradation of apoB and therefore provide insight into the molecular function of LZP in hepatic lipid metabolism.  相似文献   

12.
We have recently shown that the long-term ingestion of dietary diacylglycerol (DAG) mainly containing 1,3-isoform reduces body fat accumulation in humans as compared to triacylglycerol (TAG) with the same fatty acid composition. The fat reduction in this human experiment was most pronounced in visceral fat and hepatic fat. Recent animal studies have also indicated that dietary DAG induces alteration of lipid metabolism in the rat liver. In the present study, the dietary effects of DAG on high fat diet-induced hepatic fat accumulation and hepatic microsomal triglyceride transfer protein (MTP) activity were examined in comparison with those of TAG diet in rats. When the TAG oil content was increased from 10 to 30 g/100 g diet, hepatic TAG concentration, hepatic MTP activity and MTP large subunit mRNA levels were significantly increased after 21 days. However, when the dietary TAG oil (30 g/100 g diet) was replaced with the same concentration of DAG oil with the same fatty acid composition, the increase of the TAG concentration and the MTP activity in the liver were significantly less and the mRNA levels remained unchanged. The MTP activity levels correlated significantly with hepatic TAG concentration.These results showed that dietary DAG may suppress high fat diet-induced MTP activity in the liver, and indicated the possibility that hepatic TAG concentration may regulate hepatic MTP activity.  相似文献   

13.
Recent studies indicate that microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB) interact physically via two specific binding sites located within the amino-terminal globular region of apoB100. The first site is thought to be within the first 5.8% of the amino-terminal sequence, and the second site is between 9 and 16% of the amino-terminal sequence. It is not clear from prior studies whether these sites have unique or overlapping functions. Furthermore, there are no data differentiating between lipid transfer and potential chaperone functions of MTP. In the present study we have attempted to further characterize the physiologic interaction between apoB and MTP and to determine the relationship between the binding and lipid transfer aspects of the interaction. HepG2 cells were transiently transfected with apoB cDNAs, and MTP binding to apoB polypeptides was determined by two-step immunoprecipitation. MTP bound equally well to apoB polypeptides with (apoB13, 16,beta, apoB34, and apoB42) or without (apoB16, apoB13, and 16 or apoB13, 13, and 16) beta sheet domains. When proteasomal degradation of newly synthesized apoB polypeptides was blocked, MTP binding to all of the apoB polypeptides was only modestly affected by lipid availability and was independent of MTP-associated lipid transfer. Furthermore, MTP did not bind directly to a portion of the first beta sheet domain. We created two apoB constructs (apoB16del and apoB34del) by deleting the first 210 amino acids of apoB16 and apoB34. These apoB polypeptides, therefore, lacked the putative first MTP binding site. MTP binding to apoB16del and apoB34del was decreased significantly. However, the secretion of apoB16del was not different from apoB16, whereas the secretion of apoB34del was impaired significantly. Our results indicate that the interaction between MTP and apoB involves independent binding and lipid transfer activities but that both activities are required for the secretion of apolipoprotein B from liver cells.  相似文献   

14.
The microsomal triglyceride transfer protein (MTP) is essential for the hepatic secretion of apolipoprotein (apo) B-containing lipoproteins. Previous studies have indicated that inhibition of MTP results in decreased apoB plasma levels and decreased hepatic triglyceride secretion. However, the metabolic effects of overexpression of MTP have not been investigated. We constructed a recombinant adenovirus expressing MTP (AdhMTP) and used it to assess the effects of hepatic overexpression of MTP in mice. Injection of AdhMTP into C57BL/6 mice resulted in a 3-fold increase in hepatic microsomal triglyceride transfer activity compared to mice injected with Adnull. On day 4 after virus injection, AdhMTP-injected mice had significantly elevated plasma TG levels as compared to control virus (Adnull)-injected mice. Hepatic TG secretion rates were significantly greater in AdhMTP-injected mice (184 +/- 12 mg/kg/h) compared with Adnull-injected mice (65 +/- 9 mg/kg/h, P < 0.001). In addition, hepatic very low density lipoprotein (VLDL) apoB secretion in the AdhMTP-injected group was 74% higher than in the control virus group. Hepatic secretion of apoB-48 and apoB-100 contributed equally to this increase.These results provide the first data that hepatic overexpression of MTP results in increased secretion of VLDL-triglycerides as well as VLDL-apoB in vivo. These results suggest that MTP is rate-limiting for VLDL apoB secretion in wild-type mice under basal chow-fed conditions.  相似文献   

15.
Previously, based on distinct requirement of microsomal triglyceride transfer protein (MTP) and kinetics of triglyceride (TG) utilization, we concluded that assembly of very low density lipoproteins (VLDL) containing B48 or B100 was achieved through different paths (Wang, Y. , McLeod, R. S., and Yao, Z. (1997) J. Biol. Chem. 272, 12272-12278). To test if the apparent dual mechanisms were accounted for by apolipoprotein B (apoB) length, we studied VLDL assembly using transfected cells expressing various apoB forms (e.g. B64, B72, B80, and B100). For each apoB, enlargement of lipoprotein to form VLDL via bulk TG incorporation was induced by exogenous oleate, which could be blocked by MTP inhibitor BMS-197636 treatment. While particle enlargement was readily demonstrable by density ultracentrifugation for B64- and B72-VLDL, it was not obvious for B80- and B100-VLDL unless the VLDL was further resolved by cumulative rate flotation into VLDL(1) (S(f) > 100) and VLDL(2) (S(f) 20-100). BMS-197636 diminished B100 secretion in a dose-dependent manner (0.05-0.5 microM) and also blocked the particle enlargement from small to large B100-lipoproteins. These results yield a unified model that can accommodate VLDL assembly with all apoB forms, which invalidates our previous conclusion. To gain a better understanding of the MTP action, we examined the effect of BMS-197636 on lipid and apoB synthesis during VLDL assembly. While BMS-197636 (0.2 microM) entirely abolished B100-VLDL(1) assembly/secretion, it did not affect B100 translation or translocation across the microsomal membrane, nor did it affect TG synthesis and cell TG mass. However, BMS-197636 drastically decreased accumulation of [(3)H]glycerol-labeled TG and TG mass within microsomal lumen. The decreased TG accumulation was not a result of impaired B100-VLDL assembly, because in cells treated with brefeldin A (0.2 microgram/ml), the assembly of B100-VLDL was blocked yet lumenal TG accumulation was normal. Thus, MTP plays a role in facilitating accumulation of TG within microsomes, a prerequisite for the post-translational assembly of TG-enriched VLDL.  相似文献   

16.
Glucosamine-induced endoplasmic reticulum (ER) stress was recently shown to specifically reduce apolipoprotein B-100 (apoB-100) secretion by enhancing the proteasomal degradation of apoB-100. Here, we examined the mechanisms linking glucosamine-induced ER stress and apoB-lipoprotein biogenesis. Trypsin sensitivity studies suggested glucosamine-induced changes in apoB-100 conformation. Endoglycosidase H studies of newly synthesized apoB-100 revealed glucosamine induced N-linked glycosylation defects resulting in reduced apoB-100 secretion. We also examined glucosamine-induced changes in VLDL assembly and secretion. A dose-dependent (1-10 mM glucosamine) reduction was observed in VLDL-apoB-100 secretion in primary hepatocytes (24.2-67.3%) and rat McA-RH7777 cells (23.2-89.5%). Glucosamine also inhibited the assembly of larger VLDL-, LDL-, and intermediate density lipoprotein-apoB-100 but did not affect smaller HDL-sized apoB-100 particles. Glucosamine treatment during the chase period (posttranslational) led to a 24% reduction in apoB-100 secretion (P < 0.01; n = 4) and promoted post-ER apoB degradation. However, the contribution of post-ER apoB-100 degradation appeared to be quantitatively minor. Interestingly, the glucosamine-induced posttranslational reduction in apoB-100 secretion could be partially prevented by treatment with desferrioxamine or vitamin E. Together, these data suggest that cotranslational glucosamine treatment may cause defects in apoB-100 N-linked glycosylation and folding, resulting in enhanced proteasomal degradation. Posttranslationally, glucosamine may interfere with the assembly process of apoB lipoproteins, leading to post-ER degradation via nonproteasomal pathways.  相似文献   

17.
Lipolysis of stored triacylglycerols provides lipid precursors for the assembly of apolipoprotein B (apoB) lipoproteins in hepatocytes. Abhydrolase domain containing 5 (ABHD5) is expressed in liver and facilitates the lipolysis of triacylglycerols. To study the function of ABHD5 in lipoprotein secretion, we silenced the expression of ABHD5 in McA RH7777 cells using RNA interference and studied the metabolism of lipids and secretion of apoB lipoproteins. McA RH7777 cells deficient in ABHD5 secreted reduced amounts of apoB, triacylglycerols, and cholesterol esters. Detailed analysis of liquid chromatography-mass spectrometry data for the molecular species of secreted triacylglycerols revealed that deficiency of ABHD5 significantly reduced secretion of triacylglycerols containing oleate, even when oleate was supplied in the culture medium; the ABHD5-deficient cells partially compensated by secreting higher levels of triacylglycerols containing saturated fatty acids. In experiments tracking the metabolism of [14C]oleate, silencing of ABHD5 reduced lipolysis of cellular triacylglycerols and incorporation of intermediates derived from stored lipids into secreted triacylglycerols and cholesterol esters. In contrast, the incorporation of exogenous oleate into secreted triacylglycerols and cholesterol esters was unaffected by deficiency of ABHD5. These findings suggest that ABHD5 facilitates the use of lipid intermediates derived from lipolysis of stored triacylglycerols for the assembly of lipoproteins.  相似文献   

18.
To investigate several key aspects of phosphatidylinositol transfer protein (PI-TP) function in eukaryotic cells, rat PI-TP was expressed in yeast strains carrying lesions in SEC14, the structural gene for yeast PI-TP (SEC14p), whose activity is essential for Golgi secretory function in vivo. Rat PI-TP expression effected a specific complementation of sec14ts growth and secretory defects. Complementation of sec14 mutations was not absolute as rat PI-TP expression failed to rescue sec14 null mutations. This partial complementation of sec14 lesions by rat PI-TP correlated with inability of the mammalian protein to stably associate with yeast Golgi membranes and was not a result of rat PI-TP stabilizing the endogenous sec14ts gene product. These collective data demonstrate that while the in vitro PI-TP activity of SEC14p clearly reflects some functional in vivo property of SEC14p, the PI-TP activity is not the sole essential activity of SEC14p. Those data further identify an efficient Golgi targeting capability as a likely essential feature of SEC14p function in vivo. Finally, the data suggest that stable association of SEC14p with yeast Golgi membranes is not a simple function of its lipid-binding properties, indicate that the amino-terminal 129 SEC14p residues are sufficient to direct a catalytically inactive form of rat PI-TP to the Golgi and provide the first evidence to indicate that a mammalian PI-TP can stimulate Golgi secretory function in vivo.  相似文献   

19.
Apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) are known to interact with each other. We evaluated the effect of different lipids on the protein-protein interactions between MTP and apoB100 or its C-terminally truncated forms. Negatively charged lipids decreased protein-protein interactions between apoB and MTP. In contrast, zwitterionic phospholipids enhanced (2-4-fold) the binding of apoB100 to MTP by increasing affinity (1.5-3-fold) between these proteins without affecting the number of binding sites. Similarly, phospholipids augmented (1.5-4-fold) the binding of various C-terminally truncated apoB peptides to MTP. The increased binding was greater for apoB peptides containing lipid-binding domains, such as apoB28 and apoB42. Surprisingly, preincubation of apoB28 with lipid vesicles had no effect on MTP binding. In contrast, incubation of MTP with lipid vesicles resulted in a stable association of MTP with vesicles, and MTP-lipid vesicles bound better (5-fold increase) to LDL than did lipid-free MTP. To determine whether MTP exists stably associated with lipids in cells, microsomal contents from COS cells expressing MTP, HepG2 cells, and mouse liver were ultracentrifuged, and MTP was visualized in different density fractions. MTP was found associated and unassociated with lipids. In contrast, apoB17 and apoB:270-570 were present unassociated with lipids in COS cells. These studies show that the binding of MTP to lipids results in increased affinity for apoB and that stable MTP-lipid complexes exist in the lumen of the endoplasmic reticulum. Protein-protein interactions between apoB and MTP may juxtapose lipids associated with MTP to lipid-binding domains of apoB and facilitate hydrophobic interactions leading to enhance affinity. We speculate that MTP-lipid complexes may serve as nuclei to form "primordial lipoproteins" and may also play a role in the bulk addition of lipids during the "core expansion" of these lipoproteins.  相似文献   

20.
In this study, we explored the paradox that in suckling rats the serum concentration of LDL is high although the liver secretes only minimal quantities of VLDL, the presumed precursor of LDL. Freshly isolated hepatocytes and hepatocytes in primary culture obtained from adult (90 days old) and suckling (17 days old) rats were used to investigate the synthesis and secretion of apolipoprotein B (apoB) and lipids as well as the density profile of secreted apoB-containing lipoproteins. Furthermore, the effects of dexamethasone and oleate on apoB biogenesis were investigated in primary cultures of hepatocytes from adult and suckling rats. Hepatocytes from suckling rats were unable to assemble mature VLDL but secreted apoB as primordial lipoprotein particles in the LDL-HDL density range. Intracellular degradation of apoB was also reduced in hepatocytes from suckling rats compared with that in hepatocytes from adults. The immaturity in VLDL assembly and apoB degradation of hepatocytes from suckling rats could be overcome by treating the cultures with dexamethasone plus oleate or dexamethasone alone. The lower microsomal triacylglycerol transfer protein (MTP) mRNA concentrations in hepatocytes from suckling rats in comparison with hepatocytes from adult rats were not reflected in lower MTP activity levels. Furthermore, dexamethasone plus oleate treatment had no effect on MTP activity although VLDL assembly and secretion were clearly stimulated. We conclude that, during the suckling period of the rat, serum LDL is directly produced by the liver. This is a result of impaired hepatic VLDL assembly, which is a consequence of low triglyceride synthesis and an inefficient mobilization of bulk lipids in the second step of VLDL assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号