首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of opioids on delayed neuronal death was evaluated in the gerbil hippocampus. Male Mongolian gerbils were subjected to transient forebrain ischemia and neuronal density was evaluated in the hippocampus 7 days following ischemia. When hypothermia during and after ischemia was prevented treatment with morphine, U-50488H, or naloxone provided no significant protection. In contrast, a spontaneous drop in rectal temperature to 32°C at the end of ischemia produced near-complete protection of CA1 pyramidal neurons. No opioids modulate the protective effect of hypothermia.  相似文献   

2.
目的通过观察选择性细胞周期抑制剂olomoucine对局灶性脑缺血边缘区神经元凋亡的影响,以探讨细胞周期调控与神经元细胞凋亡的关系。方法建立光化学法诱导大鼠局灶性脑缺血模型,随机分为脑缺血组(对照组和干预组)和假手术组,采用HE染色显示梗死灶并测定其面积;应用免疫荧光化学法检测梗死灶周围神经元核心抗原(NeuN)的表达及通过TUNEL方法检测神经元凋亡;免疫印迹(Western blot)观察损伤侧皮层NeuN、周期素蛋白A(cyclin A)和周期素蛋白B1(cyclin B1)蛋白的表达。结果缺血后3d对照组梗死灶面积占脑片面积百分比值的平均值明显大于干预组(P<0.05);缺血后缺血边缘区NeuN表达减弱,对照组NeuN表达明显弱于干预组(P<0.05);缺血后梗死灶周围可见大量TUNEL阳性染色细胞,而且对照组数量明显多于干预组(P<0.05);干预组大鼠NeuN(TUNAL双标阳性表达明显弱于对照组大鼠(P<0.05);NeuN的蛋白量的表达,干预组较对照组明显增加(P<0.05),而对照组cyclin A和cyclin B1蛋白量的表达明显高于干预组(P<0.05)。结论通过对细胞周期的调控,可减少神经元凋亡和脑梗死体积,从而为缺血性脑损伤后的神经元提供一个保护作用。  相似文献   

3.
Guan YZ  Guo R  Nian H  Jin XD 《生理学报》2012,64(3):269-274
To study whether recombinant human erythropoietin (rhEPO) reduces neuronal apoptosis through inhibiting over-expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in nucleus induced by brain ischemia/reperfusion in rats, 48 adult Sprague-Dawley rats were randomly divided into 3 groups: sham, saline and EPO groups. Animal models of brain ischemia/reperfusion were established by middle cerebral artery occlusion in rats. The effects of EPO on the sizes of ischemia tissue were observed by TTC staining. The over-expression of GAPDH in nucleus was detected by Hoechst-33258 and anti-GAPDH antibody double staining. The neuronal apoptosis in penumbral was detected by Nissl's staining and Hoechst-33258 immunofluorescence, respectively. The results showed that rhEPO treatment (3 000 U/kg, three times daily, i.p.) apparently reduced the sizes of infarct brain tissue in ischemia/reperfusion rats. rhEPO inhibited over-expression of GAPDH in nucleus of apoptotic neurons. In the meantime rhEPO decreased the number of apoptotic neurons in ischemia/reperfusion rats. These results suggest that rhEPO may induced reduction of neuronal apoptosis in penumbra may be through inhibiting over-expression of GAPDH in nucleus of apoptotic neurons induced by ischemia/reperfusion. Reduction of GAPDH over-expression in nucleus may play a pivotal role in EPO inhibiting neuronal apoptosis in cerebral ischemia/reperfusion rats, providing experimental evidence for EPO neuro-protecting effects against ischemia/reperfusion.  相似文献   

4.
5.
高压氧对脑缺血再灌注海马CA_1区神经元凋亡作用的研究   总被引:4,自引:0,他引:4  
目的和方法 :应用TUNEL检测技术 ,对沙土鼠前脑缺血 2 0min后再灌注 3d模型 ,用HBO治疗连续 3d。观察HBO作用下海马CA1区神经元凋亡变化 ,研讨HBO对脑缺血再灌注损伤的疗效及其机理 ,为临床应用HBO治疗疾病提供理论依据。结果 :沙土鼠脑缺血再灌注 3d后海马CA1区大量神经元凋亡 ,HBO治疗组凋亡细胞数明显减少 (P <0 .0 1) ,并以 0 .2 5MPaHBO治疗组为佳。结论 :HBO治疗对海马神经元损伤有保护作用 ,减少神经元凋亡 ,为高压氧治疗缺血性损伤的疗效机理之一  相似文献   

6.
Oxidative stress is believed to contribute to neurodegeneration following ischemic injury. The present study was undertaken to evaluate the possible antioxidant neuroprotective effect of curcumin (Cur) on neuronal death of hippocampal CA1 neurons following transient forebrain ischemia in rat. Treatment of Cur (200 mg/kg/day, i.p.) at three different times (immediately, 3 h and 24 h after ischemia) significantly (P<0.01) reduced neuronal damage 7 days after ischemia. Also, treatment of ischemic rats with Cur decreased the elevated levels of MDA and increased GSH contents, catalase and SOD activities to normal levels. In the in vitro, Cur was as potent as antioxidant (IC50 = 1 μM) as butylated hydroxytoluene. The present study demonstrates that curcumin treatment attenuates forebrain ischemia-induced neuronal injury and oxidative stress in hippocampal tissue. Thus treatment with curcumin immediately or even delayed until 24 h may have the potential to be used as a protective agent in forebrain ischemic insult in human.  相似文献   

7.
Ischemic postconditioning is a very effective way how to prevent delayed neuronal death. Effect of Ginkgo biloba extract (EGb 761; 40 mg/kg) posttreatment was studied on the rat model of transient forebrain ischemia and ischemia/postconditioning. Global ischemia was produced by four-vessel occlusion in Wistar male rats. Two experimental protocols were used: (a) 10 min of ischemia/7 days of reperfusion with or without EGb 761 treatment or (b) 10 min of ischemia/2 days of reperfusion/5 min of ischemia (postconditioning), following 5 days of reperfusion. EGb 761 was applied as follows: 30 min before 10 min of ischemia then 5 h, 1 and 2 days after 10 min of ischemia. Fluoro Jade B, marker for neuronal degeneration, was used for quantitative analysis of the most vulnerable hippocampal CA1 neurons. Cognitive and memory functions were tested by Morris water maze, as well. Administration of EGb 761 30 min before 10 min of ischemia or 5 h after ischemia has rather no protective effect on neuronal survival in CA1 region. Ten minutes of ischemia following ischemic postconditioning after 2 days of reperfusion trigger a significant neuroprotection of CA1 neurons, but it is abolished by EGb 761 posttreatment. Ischemia/postconditioning group showed a significant improvement of learning and memory on the seventh day of reperfusion. Protection of the most vulnerable CA1 neurons after ischemia/postconditioning is abolished by exogenous antioxidant treatment used in different time intervals after initial ischemia. Moreover, combination of EGb 761 administration with repeated stress (5 min ischemia used as postconditioning) causes cumulative injury of CA1 neurons.  相似文献   

8.
1. Nitric oxide radicals (NO) play an important role in the pathophysiology of focal cerebral ischemia.2. Vascular NO can reduce ischemic brain injury by increasing CBF, whereas neuronal NO may mediate neurotoxicity following brain ischemia, mainly by its reaction with superoxide to generate peroxynitrite.3. These findings could contribute to a strategy for the treatment of cerebral ischemia.  相似文献   

9.
AimsDecoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC).Main methodMixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia.Key findingsIPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB).SignificanceExpression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC.  相似文献   

10.
1. The aim of this study was to validate the role of postconditioning, used 2 days after lethal ischemia, for protection of selectively vulnerable brain neurons against delayed neuronal death.2. Eight, 10, or 15 min of transient forebrain ischemia in rat (four-vessel occlusion model) was used as initial lethal ischemia. Fluoro Jade B, the marker of neurodegeneration, and NeuN, a specific neuronal marker were used for visualization of changes 7 or 28 days after ischemia without and with delayed postconditioning.3. Our results confirm that postconditioning if used at right time and with optimal intensity can prevent process of delayed neuronal death. At least three techniques, known as preconditioners, can be used as postconditioning: short ischemia, 3-nitropropionic acid and norepinephrine. A cardinal role for the prevention of death in selectively vulnerable neurons comprises synthesis of proteins during the first 5 h after postconditioning. Ten minutes of ischemia alone is lethal for 70% of pyramidal CA1 neurons in hippocampus. Injection of inhibitor of protein synthesis (Cycloheximide), if administered simultaneously with postconditioning, suppressed beneficial effect of postconditioning and resulted in 50% of CA1 neurons succumbing to neurodegeneration. Although, when Cycloheximide was injected 5 h after postconditioning, this treatment resulted in survival of 90% of CA1 neurons.4. Though postconditioning significantly protects hippocampal CA1 neurons up to 10 min of ischemia, its efficacy at 15 min ischemia is exhausted. However, protective impact of postconditioning in less-sensitive neuronal populations (cortex and striatum) is very good after such a damaging insult like 15 min ischemia. This statement also means that up to 15 min of ischemia, postconditioning does not induce cumulation of injuries produced by the first and the second stress.  相似文献   

11.
We have developed a cytoplasmic replicating virus vector of Sendai virus (SeV) that infects and replicates in most mammalian cells, including neurons, and directs high-level gene expression. To investigate the protective effect of SeV vector-mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF) on the delayed neuronal death caused by transient global ischemia in gerbils, SeV vectors carrying either GDNF (SeV/GDNF) or enhanced green fluorescent protein gene (SeV/GFP) were stereotaxically microinjected into the lateral ventricle. Four days after injection, occlusion of the bilateral common carotid arteries for 5 min produced transient global forebrain ischemia. Treatment with SeV/GDNF significantly decreased the delayed neuronal death of the hippocampal CA1 pyramidal neurons observed 6 days after the operation. TUNEL staining demonstrated that SeV/GDNF treatment markedly reduced the number of apoptotic cells in the hippocampal CA1 neurons, indicating that SeV/GDNF treatment prevented apoptosis. Furthermore, delayed neuronal death on the contralateral side of the hippocampal CA1 was also prevented to a similar extent as that on the ipsilateral side. These results suggest that SeV/GDNF prevents the delayed neuronal death induced by ischemia and is potentially useful for gene therapy for stroke.  相似文献   

12.
Mitogen-activated protein kinases and cerebral ischemia   总被引:18,自引:0,他引:18  
Mitogen-activated protein kinases (MAPKs) have crucial roles in signal transduction from the cell surface to the nucleus and regulate cell death and survival. Recent papers support the hypothesis that neuronal apoptosis and cerebral ischemia induce the robust activation of MAPK cascades. Although extracellular signal-regulated kinases pathways promote cell survival and proliferation, and c-Jun N-terminal protein kinases/p38 pathways induce apoptosis in general, the roles of MAPK cascades in neuronal death and survival seem to be complicated and altered by the type of cells and the magnitude and timing of insults. Some specific inhibitors of MAPK cascades provide important information in clarifying the roles of each molecule in neuronal death and survival, but the results are still controversial. Further studies are necessary to elucidate the activated signal transduction upstream and downstream of the cascades in cerebral ischemia, and to define the crosstalk between the cascades and other signaling pathways, before MAPK cascades can be candidate molecules in the treatment of cerebral ischemia.  相似文献   

13.
14.
Glutamate is implicated in neuronal cell death. Exogenously applied DOPA by itself releases neuronal glutamate and causes neuronal cell death in in vitro striatal systems. Herein, we attempt to clarify whether endogenous DOPA is released by 10 min transient ischemia due to four-vessel occlusion during rat striatal microdialysis and, further, whether DOPA, when released, functions to cause glutamate release and resultant delayed neuronal cell death. Ischemia increased extracellular DOPA, dopamine, and glutamate, and elicited neuronal cell death 96 h after ischemic insult. Inhibition of striatal L-aromatic amino acid decarboxylase 10 min before ischemia increased markedly basal DOPA, tripled glutamate release with a tendency of decrease in dopamine release by ischemia, and exaggerated neuronal cell death. Intrastriatal perfusion of 10-30 nM DOPA cyclohexyl ester, a competitive DOPA antagonist, 10 min before ischemia, concentration-dependently decreased glutamate release without modification of dopamine release by ischemia. At 100 nM, the antagonist elicited a slight ceiling effect on decreases in glutamate release by ischemia and protected neurons from cell death. Glutamate was released concentration-dependently by intrastriatal perfusion of 0.3-1 mM DOPA and stereoselectively by 0.6 mM DOPA. The antagonist elicited no hypothermia during and after ischemia. Endogenously released DOPA is an upstream causal factor for glutamate release and resultant delayed neuronal cell death by brain ischemia in rat striata. DOPA antagonist has a neuroprotective action.  相似文献   

15.
ABSTRACT: BACKGROUND: Cerebral ischemia has been shown to induce activation of matrix metalloproteinases (MMPs), particularly MMP-9, which is associated with impairment of the neurovasculature, resulting in blood-brain barrier breakdown, hemorrhage and neurodegeneration. We previously reported that the thiirane inhibitor SB-3CT, which is selective for gelatinases (MMP-2 and 9), could antagonize neuronal apoptosis after transient focal cerebral ischemia. RESULTS: Here, we used a fibrin-rich clot to occlude the middle cerebral artery (MCA) and assessed the effects of SB-3CT on the neurovasculature. Results show that neurobehavioral deficits and infarct volumes induced by embolic ischemia are comparable to those induced by the filament-occluded transient MCA model. Confocal microscopy indicated embolus-blocked brain microvasculature and neuronal cell death. Post-ischemic SB-3CT treatment attenuated infarct volume, ameliorated neurobehavioral outcomes, and antagonized the increases in levels of proform and activated MMP-9. Embolic ischemia caused degradation of the neurovascular matrix component laminin and tight-junction protein ZO-1, contraction of pericytes, and loss of lectin-positive brain microvessels. Despite the presence of the embolus, SB-3CT mitigated these outcomes and reduced hemorrhagic volumes. Interestingly, SB-3CT treatment for seven days protected against neuronal laminin degradation and protected neurons from ischemic cell death. CONCLUSION: These results demonstrate considerable promise for the thiirane class of selective gelatinase inhibitors as potential therapeutic agents in stroke therapy.  相似文献   

16.
We investigated the effect of thyroxine against neuronal damage caused by ischemia in the rat. Neuronal damage was evaluated in the hippocampal CA1 subfield 7 days after a 10 min forebrain ischemia. Thyroxine was administered to animals divided in three groups: 15 min prior to ischemia (group 1), immediately after ischemia (group 2), and both before and after ischemia (group 3). The treatment of rats with a single dose of thyroxine given pre- or postischemia failed to prevent the loss of CA1 pyramidal cells. In contrast, repetitive administration of thyroxine before and after ischemia reduced the damage of the CA1 pyramidal cells. The mechanisms possibly underlying this neuroprotective effect are discussed.  相似文献   

17.
Transient global ischemia induces selective, delayed neuronal death in the hippocampal CA1 and cognitive deficits. Physiological levels of 17β-estradiol ameliorate ischemia-induced neuronal death and cognitive impairments in young animals. In view of concerns regarding hormone therapy in postmenopausal women, we investigated whether chronic estradiol treatment initiated 14 days prior to ischemia attenuates ischemia-induced CA1 cell loss and impairments in visual and spatial memory, in ovariohysterectomized (OVX), middle-aged (9-11 months) female rats. To determine whether the duration of hormone withdrawal affects the efficacy of estradiol treatment, hormone treatment was initiated immediately (0 week), 1 week, or 8 weeks after OVX. Age-matched, OVX and gonadally intact females were studied at each OVX interval. Ischemia was induced 1 week after animals were pretested on a variety of behavioral tasks. Global ischemia produced significant neuronal loss in the CA1 and impaired performance on visual and spatial recognition. Chronic estradiol modestly but significantly increased the number of surviving CA1 neurons in animals at all OVX durations. However, in contrast with previous results in young females, estradiol did not preserve visual or spatial memory performance in middle-aged females. All animals displayed normal locomotion, spontaneous alternation and social preference, indicating the absence of global behavioral impairments. Therefore, the neuroprotective effects of estradiol are different in middle-aged than in young rats. These findings highlight the importance of using older animals in studies assessing potential treatments for focal and global ischemia.  相似文献   

18.
Astrogliosis occurs after brain ischemia, and excessive astrogliosis can devastate the neuronal recovery. Previous reports show that galectin-1 (Gal-1) regulates proliferation of several cell types and plays an important role after nervous system injuries. Here, we found that expression of Gal-1 was remarkably up-regulated in activated astrocytes around ischemic infarct. Furthermore, under ischemic conditions either in vitro or in vivo, Gal-1 was found to inhibit the proliferation of astrocytes in a dose-dependent manner, attenuate astrogliosis and down-regulate the astrogliosis associated expression of nitric oxide synthase and interleukin-1β after the ischemia. All these changes were blocked by lactose, suggesting a lectin dependent manner of Gal-1's function. Moreover, 7-day Gal-1 treatment reduced apoptosis of neurons, decreased brain infarction volume and improved neurological function induced by the ischemia. Together, these findings indicate that through reducing astrogliosis related damages, Gal-1 is a potential therapeutical target for attenuating neuronal damage and promoting recovery of brain ischemia.  相似文献   

19.
Recent studies show that Thioredoxin (Trx) possesses a neuronal protective effect and that Trx inactivation is closely related to cerebral ischemia injury. Peroxynitrite (ONOO) formation may trigger oxidative/nitrative stress and represent a major cytotoxic effect in cerebral ischemia. The present study was conducted to validate whether treatment with recombinant human Trx-1 (rhTrx-1) would attenuate ONOO generation and oxidative/nitrative stress in focal transient cerebral ischemia. The results showed that intravenously administered rhTrx-1 (10 mg/kg) significantly improved neurological functions and reduced cerebral infarction and apoptotic cell death following cerebral ischemia. Neuronal ONOO formation was significantly attenuated after rhTrx-1 treatment. Moreover, rhTrx-1 resulted in a significant decrease in antioxidant capacity and p38 mitogen activated protein kinase (MAPK) activity in ischemic brain tissue. Furthermore, the suppression on ONOO formation by either rhTrx-1 or an ONOO scavenger uric acid reduced cerebral infarct size in mice subjected to cerebral ischemia. Peroxynitrite donor SIN-1 not only blocked the neuronal protection of rhTrx-1 but also markedly attenuated rhTrx-1-induced antioxidative/antinitrative effect. We concluded that rhTrx-1 exerts an antioxidative/antinitrative effect against cerebral ischemia injury by blocking ONOO and superoxide anion formation. These results provide the information that thioredoxin is much more likely to succeed as a therapeutic approach to diminish oxidative/nitrative stress-induced neuronal apoptotic cell death in the ischemic brain.  相似文献   

20.
脑缺血再灌注损伤的主要机制是多种因素诱导的神经元凋亡。而神经元凋亡在一定程度上是可以调控和逆转的。亚低温以其对条件的要求不高实施方便等特点,奠定了其可以大范围推广的基础。作为能够辅助治疗脑缺血再灌注损伤的措施之一,亚低温的作用已经越来越多的得到了大家的重视,其脑缺血保护机制的相关研究也逐年增加。现阶段研究者对亚低温脑保护作用的研究重点放在了抑制细胞凋亡的机制上,也证实了亚低温的脑保护作用的机制和其抑制细胞凋亡密不可分。本文针对这一点,对近几年有关亚低温抑制大鼠脑缺血再灌注诱导的细胞凋亡机制的研究进展作一综述,为亚低温治疗脑缺血性疾病的临床应用提供理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号