首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microorganisms from culture collections and isolates from nature were screened for the ability to catalyze the regioselective glucosylation of pyridoxine (PN) to produce pyridoxine 5'-alpha-D-glucoside (PN-5'-alpha-G) or pyridoxine 4'-alpha-D-glucoside (PN-4'-alpha-G). Transglucosylation activity specific to 5'-position of PN was found in fungi belonging to genera such as Coriolus and Verticillium, and activity at the 4'-position of PN was found in bacteria belonging to genera such as Bacillus and Serratia. From 100 mM PN, intact cells of Verticillium dahliae TPU 4900 produced 42 mM (13.9 mg/mL) PN-5'-alpha-G after 70 h of reaction. Intact cells of Bacillus cereus TPU 5504 produced 33 mM (10.9 mg/mL) PN-4'-alpha-G after 19 h of reaction. The selectivities for 5'- and 4'-positions were 80% and 90%, respectively.  相似文献   

2.
Nearly 100% 5'-position selectivity of transglucosylation from maltodextrin to pyridoxine (PN) by cells of Verticillium dahliae TPU 4900 was observed when the reaction was carried out with borate. The same effect of borate was observed not only during synthesis of pyridoxine 5'-alpha-D-glucoside by partially purified enzyme of this strain but also during synthesis of this compound by other microorganisms and with other enzymes (alpha-glucosidase and cyclomaltodextrin glucanotransferase). The effect was thought to be caused by the formation of a borate complex with 3- and 4'-position hydroxyl groups of PN. A decrease in the formation of pyridoxine 5'-alpha-D-glucoside was observed in the reaction with borate, but this decrease was overcome by optimizing the pH and increasing the amount of cells in the reaction mixture.  相似文献   

3.
Novel glucoside of physiological active vanillyl alcohol was synthesized for the first time using maltase from Saccharomyces cerevisiae as catalyst, and established its structure as 4-hydroxy-3-methoxybenzyl-α-D: -glucopyranoside. The key reaction factors for this transglucosylation reaction were optimized using response surface methodology and the highest yield so far in maltase catalyzed transglucosylation reaction was obtained. It was found out that optimum temperature of reaction was 37 °C, optimal maltose concentration was 60% (w/v), optimal pH was 6.6, and optimal concentration of vanillyl alcohol was 158 mM. Under these conditions, yield of glucoside was 90 mM with no by product formation. It was shown that this compound posses good antioxidant activity as well as stability in gastrointestinal tract. It was demonstrated that it is hydrolyzed on brush border membrane of enterocytes, so it can serve in protecting gastrointestinal system from oxidation, as well as source of anticonvulsive drug after the hydrolysis of glucoside on brush border membrane of small intestine.  相似文献   

4.
β‐Glucosylglycerol (βGG) has potential applications as a moisturizing agent in cosmetic products. A stereochemically selective method of its synthesis is kinetically controlled enzymatic transglucosylation from a suitable donor substrate to glycerol as acceptor. Here, the thermostable β‐glycosidase CelB from Pyrococcus furiosus was used to develop a microstructured immobilized enzyme reactor for production of βGG under conditions of continuous flow at 70°C. Using CelB covalently attached onto coated microchannel walls to give an effective enzyme activity of 30 U per total reactor working volume of 25 µL, substrate conversion and formation of transglucosylation product was monitored in dependence of glucosyl donor (2‐nitrophenyl‐β‐D ‐glucoside (oNPGlc), 3.0 or 15 mM; cellobiose, 250 mM), the concentration of glycerol (0.25–1.0 M), and the average residence time (0.2–90 s). Glycerol caused a concentration‐dependent decrease in the conversion of the glucosyl donor via hydrolysis and strongly suppressed participation of the substrate in the reaction as glucosyl acceptor. The yields of βGG were ≥80% and ≈60% based on oNPGlc and cellobiose converted, respectively, and maintained up to near exhaustion of substrate (≥80%), giving about 120 mM (30 g/L) of βGG from the reaction of cellobiose and 1 M glycerol. The structure of the transglucosylation products, 1‐O‐β‐D ‐glucopyranosyl‐rac‐glycerol (79%) and 2‐O‐β‐D ‐glucopyranosyl‐sn‐glycerol (21%), was derived from NMR analysis of the product mixture of cellobiose conversion. The microstructured reactor showed conversion characteristics similar to those for a batchwise operated stirred reactor employing soluble CelB. The advantage of miniaturization to the microfluidic format lies in the fast characterization of full reaction time courses for a range of process conditions using only a minimum amount of enzyme. Biotechnol. Bioeng. 2009;103: 865–872. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
By treatment of a wild-type strain of Cellulomonas flavigena with N-methyl-N'-nitro-N-nitrosoguanidine at 150 g/ml, mutants PN-7 and PN-10 were obtained, which produce 1.38 and 1.5 times more carboxymethylcellulase than the wild strain when cultured in a batch system with sugar cane bagasse as the sole carbon source. These mutants also exhibited higher specific growth rates compared to the wild strain. From a second mutagenesis of mutant PN-10, mutant PN-120 was obtained in continuous culture. This mutant was able to use a larger portion of sugar cane bagasse than did the wild-type and therefore its biomass yield was also higher. The mutant showed a specific growth rate on sugar cane bagasse threefold higher than the wild strain.  相似文献   

6.
The Raphanus sativus L. antifungal protein 1 (Rs-AFP1) gene was isolated by polymerase chain reaction (PCR). The complete open reading frame and the fragment encoding the putative mature protein were inserted into the prokaryotic expression vector pET-32b(+), respectively. Subsequent expression showed that the Rs-AFP1 was produced in E. coli as a 27 kD fusion protein only when the N-terminal signal peptide was removed. After treatment with thrombin to remove part of the N-terminal His.tag sequence, the bacterially expressed Rs-AFP1 was used for fungal growth inhibition assay which was conducted on Verticillium dahliae Kleb., a soil-born fungus causing the cotton wilt disease. Results showed that, in the liquid medium, the Rs-AFP1 fusion protein at a concentration of 0.3 g/L clearly inhibited the growth of V. dahliae and the germination of spores. Thus the bacterially expressed fusion protein had the antifungal activity against V. dahliae.  相似文献   

7.
利用聚合酶链式反应 (PCR)获得了萝卜 (RaphanussativusL .)抗真菌蛋白 1(Rs_AFP1)基因编码区核苷酸序列。将整个阅读框架片段和去除了N_端信号肽序列的片段分别装入原核表达载体pET_32b( )中 ,在大肠杆菌中表达 ,发现带有信号肽的Rs_AFP1不能在大肠杆菌中表达 ,而当这一序列去除后 ,表达出约 2 7kD的Rs_AFP1的融合蛋白。用凝血酶处理融合蛋白以去除N_端His.tag的部分序列 ,然后用处理后的融合蛋白进行了抑制真菌生长的实验。结果表明 ,在加入 0 .3g/L的Rs_AFP1的融合蛋白的培养液中 ,大丽轮枝菌 (VerticilliumdahliaeKleb .)的生长受到抑制 ,分别比加入对照细菌蛋白和PBS下降 5 7.5 %和 6 9.8% ;孢子的萌发也受到抑制。显然 ,细菌表达的融合蛋白对大丽轮枝菌的生长有抑制作用。  相似文献   

8.
Isolation and identification of a soil bacterium, Arthrobacter Cr-7, that grows with pyridoxine as a sole source of carbon and nitrogen are described. An inducible pyridoxine 5'-dehydrogenase (oxidase) (EC 1.1.99.9) that catalyzes conversion of pyridoxine to isopyridoxal, Pyridoxine + X----isopyridoxal + XH2, the first step in utilization of pyridoxine as a growth substrate by this organism, was purified about 520-fold to homogeneity. The enzyme (Mr = 112,000) is a dimer of probably identical subunits and requires FAD (KD(app) = 0.24 microM) as coenzyme. It oxidizes only pyridoxine (Km = 0.18 mM) and a few related compounds (4-deoxypyridoxine, pyridoxamine, pyridoxal) that contain a free 5-CH2OH group and utilizes oxygen (Km = 0.28 mM), 2,6-dichloroindophenol, or quinones, but not NAD+ or NADP+, as hydrogen acceptors (X in reaction above). With pyridoxine and oxygen as substrates, the enzyme has a broad pH optimum (from pH 7.0 to 8.3), a Vmax of 11.9 mumol X min-1 X mg-1, and a turnover number of 22 s-1 at 25 degrees C. The enzyme is strongly inhibited by sulfhydryl reagents. Except for its substrate specificity, these properties do not differ greatly from those of other flavin-dependent oxidases.  相似文献   

9.
维生素在丙酮酸过量合成中的重要作用   总被引:19,自引:0,他引:19  
研究了烟酸、硫胺素、吡哆醇、生物素和核黄素对一株光滑球拟酵母(\%Torulopsis glabrata\%) WSH\|IP303以葡萄糖为碳源、以氯化铵为唯一氮源生产丙酮酸的影响。利用正交试验方法,确证了硫胺素是影响WSH\|IP303生产丙酮酸的最重要因素。在硫胺素浓度一定(0.01~0.015mg/L)的前提下,提高烟酸浓度有助于加快耗糖速度。当烟酸、硫胺素、吡哆醇、生物素和核黄素的浓度分别为8、0.015、0.4、0.04和01mg/L时,摇瓶发酵48h,丙酮酸产量和产率可分别达到52.4g/L和0525g/g。采用优化的维生素组合方式,进行2.5L罐分批发酵,在初糖浓度120g/L的条件下发酵57.5h,丙酮酸产量和产率分别达到69.4g/L和0593g/g,分别比摇瓶培养的最好结果提高了32.%和13%。  相似文献   

10.
Kinetic study of a cellobiase purified from Neocallimastix frontalis EB188   总被引:1,自引:0,他引:1  
A cellobiase was purified from the culture supernatant of Neocallimastix frontalis EB188. This enzyme possessed a molecular weight of 85,000 and an isoelectric point of 6.95. The enzyme rapidly hydrolyzed cellobiose, p-nitrophenyl (pNP) beta-D-glucopyranoside (pNPG) and cellotriose and slowly hydrolyzed cellopentaose and salicin. The enzyme did not hydrolyze pNP alpha-D-glucopyranoside or pNP beta-D-cellobioside. Substrate inhibition was observed when cellobiose or pNPG were used as the substrates and glucose production was measured. The kinetic parameters were: K = 0.053 mM, V = 5.88 U/mg of protein and Ki = 0.95 mM for cellobiose; K = 0.36 mM, V = 1.05 U/mg and Ki = 8.86 mM for pNPG. Substrate inhibition was not detected during the hydrolysis of pNPG when pNP production was measured. The kinetic parameters for pNPG were: K = 0.67 mM and V = 1.49 U/mg of protein. The presence of an enzyme.glucose.substrate complex and transglucosylation was evident during the catalysis. Glucose, cellobiose, glucono-delta-lactone, galactose, lactose, maltose and salicin acted as competitive inhibitors during the hydrolysis of pNPG with the apparent inhibition constants (Kis) of 4.8 mM, 0.035 mM, 0.062 mM, 28.5 mM, 0.38 mM, 15.0 mm and 31.0 mM, respectively.  相似文献   

11.
Derepressed mutant PR-22 was obtained by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) mutagenic treatment of Cellulomonas flavigena PN-120. This mutant improved its xylanolytic activity from 26.9 to 40 U mg−1 and cellulolytic activity from 1.9 to 4 U mg−1; this represented rates almost 2 and 1.5 times higher, respectively, compared to its parent strain growing in sugarcane bagasse. Either glucose or cellobiose was added to cultures of C. flavigena PN-120 and mutant PR-22 induced with sugarcane bagasse in batch culture. The inhibitory effect of glucose on xylanase activity was more noticeable for parent strain PN-120 than for mutant PR-22. When 20 mM glucose was added, the xylanolytic activity decreased 41% compared to the culture grown without glucose in mutant PR-22, whereas in the PN-120 strain the xylanolytic activity decreased by 49% at the same conditions compared to its own control. Addition of 10 and 15 mM of glucose did not adversely affect CMCase activity in PR-22, but glucose at 20 mM inhibited the enzymatic activity by 28%. The CMCase activity of the PN-120 strain was more sensitive to glucose than PR-22, with a reduction of CMCase activity in the range of 20–32%. Cellobiose had a more significant effect on xylanase and CMCase activities than glucose did in the mutant PR-22 and parent strain. Nevertheless, the activities under both conditions were always higher in the mutant PR-22 than in the PN-120 strain. Enzymatic saccharification experiments showed that it is possible to accumulate up to 10 g l−1 of total soluble sugars from pretreated sugarcane bagasse with the concentrated enzymatic crude extract from mutant PR-22.  相似文献   

12.
James JT  Dubery IA 《Phytochemistry》2001,57(2):149-156
An extracellular endo-polygalacturonase (PGase) [E.C. 3.2.1.15] was isolated from 18-day-old culture filtrates of Verticillium dahliae and partially purified using gel permeation chromatography. The band responsible for PGase activity was electrophoretically characterized as having a molecular mass of approximately 29 500 and an isoelectric point of 5.4. Kinetic studies indicate a Km of 3.3 mg ml(-1) and Vmax of 0.85 micromol reducing units min(-1) ml(-1) with polygalacturonic acid as substrate. Polygalacturonase inhibitor protein (PGIP) in cotton seedlings was induced by 5 mM salicylic acid and immunochemical analysis indicated high levels in the hypocotyl tissues. PGIP was purified from roots and stems using affinity chromatography with endo-PGase from Aspergillus niger as an immobilised ligand. The purified PGIP contained monomeric and dimeric molecules with molecular masses of 34 and 66 kDa respectively. Purified cotton PGIP inhibited endo-polygalacturonase from A. niger in a non-competitive or mixed manner with an inhibition constant. K(I) of 15 nM. The isolated V. dahliae PGase was, however, inhibited in a positive cooperative manner, indicative of allosteric interactions between the enzyme and the inhibitor protein. In addition to reducing the reaction rate, decreased substrate affinity may contribute to the accumulation of elicitor-active oligouronides.  相似文献   

13.
Hazel (Corylus avellana L.) has recently been drawing attention as an alternative source of taxol. In the present study, the effects of sugar type, and different concentrations of phenylalanine (Phe) and vanadyl sulfate (V) on the production of taxol in C. avellana were investigated. A factorial experiment was used to optimize the concentrations of the precursor and elicitor. The cells were treated with Phe and V on the fourth day of culture and were harvested every 2 days until the 10th day. By increasing the Phe and V supply, taxol production increased during the culture period and the maximum level of 4.2 μg/g (dry weight) was obtained at day 10 by combining 3 μM of Phe and 0.05 and 0.1 mM of V in media supplemented with fructose (3%). The time course study on taxol production suggested that the appropriate time for using Phe is day 4 of culture, and day 8 for V. Overall, taxol production in C. avellana cell suspension culture was improved by the use of the combined strategy.  相似文献   

14.
Aryl alcohol oxidase (MtGloA) is an enzyme that belongs to the ligninolytic consortium and can play an important role in the bioenergy industry. This study investigated production of an MtGloA client enzyme by a mutant strain of Aspergillus nidulans unable to synthesize its own pyridoxine. Pyridoxine limitation can be used to control cell growth, diverting substrate to protein production. In agitated culture, enzyme production was similar when using media with 1 mg/L and without pyridoxine (26.64 ± 6.14 U/mg mycelia and 26.14 ± 8.39 U/mg mycelia using media with and without pyridoxine, respectively). However, the treatment lacking pyridoxine had to be supplemented with pyridoxine after 156 h of fermentation to sustain continued enzyme production. Use of extremely diluted pyridoxine levels allowed reduced fungal growth while maintaining steady enzyme production. Concentrations of 9 and 13.5 µg/L pyridoxine allowed MtGloA production with a growth rate of only 5% of that observed when using the standard 1 mg/L pyridoxine media.  相似文献   

15.
一株嗜热子囊菌产生的碱性耐热过氧化氢酶及其应用潜力   总被引:11,自引:0,他引:11  
研究了一株嗜热子囊菌产过氧化氢酶的摇瓶发酵条件,并对其在纺织工业中的应用潜力进行了评价。以20 g/L糊精和1%(V/V)乙醇为混合碳源时,过氧化氢酶酶活达到1594 u/Ml,比以糊精和乙醇单独为碳源时过氧化氢酶的活力之和还高23%。改变培养基的初始Ph、提高发酵液中的溶氧水平及添加外源过氧化氢,过氧化氢酶的产量进一步提高到2762 u/Ml,比优化前提高了5.8倍。将嗜热子囊菌的过氧化氢酶同来源于牛肝、黑曲霉的过氧化氢酶进行了热(70℃, 80℃, 90℃)、碱(Ph 9.0, Ph 10.0, Ph 11.0)稳定性的比较。结果显示,产自嗜热子囊菌的过氧化氢酶对高温和强碱性的耐受性能明显优于其它来源的酶,在纺织染整工艺中具有良好的应用潜力。  相似文献   

16.
The transglucosylation reaction catalyzed by wild-type beta-glucosidase CelB from hyperthermophilic Pyrococcus furiosus and active site mutants (M424K, F426Y, M424K/F426Y) was studied. The conversion of pentyl-beta-glucoside to hexyl-beta-glucoside in hexanol was used as a model transglucosylation reaction. Hydrolysis to glucose was a side reaction. The selectivity towards transglucosylation was quantified by the S value defined as follows: S = r(S) x a(W)/r(H) x a(hex) where r(S) and r(H) are the initial rates of transglucosylation and hydrolysis and a(w) and a(hex) are the thermodynamic activities of water and hexanol. The activity (rates of hydrolysis and transglucosylation) and the selectivity (S value) were measured as a function of pentyl-beta-glucoside concentration (5-240 mM), water content (1-100% v/v), and temperature (50-95 degrees C). All mutants had lower activity than the wild-type enzyme, but they had higher selectivity, which means that they provided a higher ratio of transglucosylation product to hydrolysis product. The largest increase in S-value (2.6 fold) was obtained by the F426Y mutant, which resulted in increased hexyl-beta-glucoside yield from 56% to 69%. In addition, the F426Y enzyme had higher selectivity over the wide range of temperatures tested. The activity of CelB wild-type and CelB F426Y increased as a function of water activity (a(w)), and complete activation by the water was obtained in a two-phase system with 20% water phase. In contrast to CelB wild-type, the F426Y mutant had transferase activity as low as a(w) = 0.29. Surprisingly, the S value increased with increasing water activity up to a(w) = 0.92. At still higher water content the S value decreased.  相似文献   

17.
Hydroquinone α-isomaltoside and hydroquinone α-glucoside were synthesized by transglucosylation in an aqueous system with baker's yeast α-glucosidase from hydroquinone and maltose as a glucosyl donor. Only one phenolic group was glucosylated, with α-selectivity, and the nature of the reaction products was governed by the concentration of hydroquinone. The optimal conditions for synthesis of glycosides were 9 mM hydroquinone and 1.5 M maltose in a 100 mM sodium citrate/phosphate buffer at pH 5.0 and 30 °C for 20 h. Under these conditions both hydroquinone α-glycosides were obtained in nearly equimolar amounts with a total molar yield of 28% with respect to hydroquinone and a total glycoside concentration of 1 mg/mL in the reaction mixture.  相似文献   

18.
The influence of vanadium compounds (vanadate, vanadyl citrate) on photosynthesis in Chlorella fusca and in algal and spinach chloroplasts has been investigated. It was found that: 1. At moderately high concentrations (at least 0.1 mM) both vanadate and vanadyl citrate enhance photosynthetic O2 production in intact C. fusca cells. At lower V concentration (about 2 μM) only vanadate stimulates photosynthesis. The increase is dependent on culture conditions and on light intensity. 2. Up to 1 mM V, neither vanadium compound influences PS II activity, either in intact cells or in algal or spinach chloroplasts. 3. The PS I reaction in algal and spinach chloroplasts is maximally enhanced (3-fold) in presence of vanadium (20 μM). The increase is independent of light intensity. 4. Cr(VI), Mo(VI), and W(VI) (1 mM) stimulate photosynthesis in intact C. fusca cells, but do not influence the photosystems of isolated chloroplasts. Vanadium is suggested to act as a redox catalyst in the electron transport from PS II to PS I.  相似文献   

19.
以羟基乙腈为唯一氮源, 从土壤中筛选到一株腈水解酶产生菌CCZU-12, 经形态观察生理生化实验和16S rDNA序列分析, 鉴定该菌为假单胞菌属(Pseudomonas sp.)。对菌株CCZU-12产腈水解酶的培养条件及催化反应条件进行优化, 最适产酶培养条件为: 碳源为10 g/L乙酸钠, 氮源为5 g/L酵母粉, 金属离子为1.0 mmol/L Mg2+, 培养温度30 °C, pH值7.0, 接种量4%, 装液量50 mL/250 mL; 最适催化反应温度35 °C, pH值7.0, 反应120 h, 羟基乙腈转化率达到98.9%。  相似文献   

20.
A glyoxalase I gene homologue (VdGLO1) was identified in the vascular wilt fungus Verticillium dahliae by sequence tag analysis of genes expressed during resting structure development. The results of the current study show that the gene encodes a putative 345 amino acid protein with high similarity to glyoxalase I, which produces S-D-lactoylglutathione from the toxic metabolic by-product methylglyoxal (MG). Disruption of the V. dahliae gene by Agrobacterium tumefaciens-mediated transformation resulted in enhanced sensitivity to MG. Mycelial growth of disruption mutants was severely reduced in the presence of 5 mmol/L MG. In contrast, spore production in liquid medium was abolished at 1 mmol/L MG, although not at physiologically relevant concentrations of 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号