首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of the native form of plasminogen (Glu-plasminogen) to form complexes with fibrinogen and its fragments immobilized on CNBr-agarose was studied. It was found that unlike Lys-plasminogen, the native form of the proenzyme does not bind to fibrinogen agarose. Limited proteolysis of fibrinogen by plasmin involving alpha C-domains results in the appearance of Glu-plasminogen binding sites at fibrinogen surface. The X2 fragment of fibrinogen binds to about 0.5 moles of Glu-plasminogen at an equimolar ratio of the interacting proteins. Under these conditions, the amount of bound Glu-plasminogen does not increase as a result of subsequent hydrolysis of fibrinogen down to end products, fragments E and D. It was found that Glu-plasminogen interacts with both E- and D-fragments of fibrinogen. Similar to Lys-plasminogen, Glu-plasminogen exhibits a high affinity for the E-fragment. The maximal quantity of the bound protein under the given experimental conditions is 2 moles per mole of the immobilized E-fragment. The interaction of Glu-plasminogen with the E-fragment is mediated by the lysine-binding sites of the proenzyme with a high and low affinity [Kd = 1.8.10(-6) and 7.5.10(-5) M, respectively]. Glu-plasminogen, unlike Lys-plasminogen, shows a low affinity for the D-fragment (Kd = 2.10(-5) M). Glu-plasminogen cannot be adsorbed by arginine-binding sites at the DH fragment-agarose.  相似文献   

2.
Plasminogen and plasminogen derivatives which contain lysine-binding sites were found to decrease the reaction rate between plasmin and alpha2-antiplasmin by competing with plasmin for the complementary site(s) in alpha2-antiplasmin. The dissocwation constant Kd for the interaction between intact plasminogen (Glu-plasminogen) and alpha2-antiplasmin is 4.0 microM but those for Lys-plasminogen or TLCK-plasmin are about 10-fold lower indicating a stronger interaction. The lysine-binding site(s) which is situated in triple-loops 1--3 in the plasmin A-chain is mainly responsible for the interaction with alpha2-antiplasmin. The interaction between Glu-plasminogen and alpha2-antiplasmin furthermore enhances the activation of Glu-plasminogen by urokinase to a comparable extent as 6-aminohexanoic acid, suggesting that similar conformational changes occur in the proenzyme after complex formation. Fibrinogen, fibrinogen digested with plasmin, purified fragment E and purified fragment D interfere with the reaction between plasmin and alpha2-antiplasmin by competing with alpha2-antiplasmin for the lysine-binding site(s) in the plasmin A-chain. The Kd obtained for these interactions varied between 0.2 microM and 1.4 microM; fragment E being the most effective. Thus the fibrinogen molecule contains several complementary sites to the lysine-binding sites located both in its NH2-terminal and COOH-terminal regions; these sites are to a large extent.  相似文献   

3.
In order to study thrombin interaction with fibrinogen, thrombin binding to fragments D and E (prepared by plasmin digestion of fibrinogen) and to intact S-carboxymethylated chains of fibrinogen (A alpha, B beta, and gamma) was analyzed by autoradiography, immunoblotting, and affinity chromatography. Complex formation was observed between late fragment E and thrombin but not with fragment D. The three reduced chain remnants of fragment E all formed complexes with thrombin. Also, thrombin bound to the intact, separated A alpha, B beta, and gamma chains of fibrinogen as well as to the alpha and beta chains of fibrin. In these experiments the extended substrate-binding site, but not the catalytic-binding site, was being examined because fragment E had as its amino-terminal amino acids Val20 in the alpha chain, Lys54 in the beta chain, and Tyr1 in the gamma chain. Also, thrombin inhibited in its active center by D-phenyl-alanyl-L-prolyl-L-arginine-chloromethyl ketone bound to fragment E and to the separated chains in the same manner as unmodified thrombin. A lysine residue to thrombin was essential for its binding to fibrinogen. Thrombin attached to CNBr-activated Sepharose through its amino groups did not bind to fragment E, but when thrombin was attached through its carboxyl groups, it bound fragment E.  相似文献   

4.
Hydrolysis of plasminogen permits obtaining its nine fragments. The method of differential scanning microcalorimetry reveals seven domains in plasminogen, and the affinity chromatography--three lysin- and three arginyl-binding sites. The lysin-binding sites of domains (Kringles) K1 and K4 differ in ligand specificity. Benzamidine-binding sites of domain K5 and of plasmin light chain are simultaneously arginine-binding ones. The third arginyl-binding site differing from the benzamidine-binding one is found in fragment K1-3. In the plasminogen-fibrin interaction only lysin-binding sites of plasminogen take part; in the plasminogen fragments-fibrinogen fragments interaction both types of plasminogen sites participate. The heavy chain of plasmin interacts with the E-fragment of fibrinogen by the lysin-binding sites, and the light chain of plasmin interacts with D-fragment of fibrinogen by arginyl-binding sites. Sites complementary to arginyl binding sites of plasminogen are located on the DH-fragment and sites of interaction with lysin- and arginyl-binding sites--on the DL-fragment. The plasmin-fibrin interaction mediated by sites of the first four cringles is not associated with changes in the catalytic function of the active centre. Interaction of Lys-plasminogen with fibrin accelerates polymerization of the latter. The effect of Lys-plasminogen is conditioned by the lysin-binding sites. Glu-plasminogen has no effect on the polymerization process.  相似文献   

5.
Possible interaction of alpha-2-antiplasmin with fibrinogen, fibrin and their fragments independent of factor XIII as well as the inhibitor effect on the Glu-plasminogen activation by tissue activator were studied. It was shown that alpha-2-antiplasmin is adsorbed on desAA- and desAABBfibrin films (Kd 69.0 +/- 1.0 nM 68.6 +/- 5.3 nM, respectively). Glu-Plasminogen has no effect on the inhibitor binding with desAABBfibrin. Alpha-2-antiplasmin shows strong affinity for fibrin D-dimer (Kd 65.0 +/- 4.0 nM) and D-fragment of fibrinogen (Kd 119.0 +/- 21.0 nM), but it does not interact with E-fragment. The inhibitor inside the fibrin clot decreases 10 times the activation rate of Glu-plasminogen by the tissue activator both is the presence and without factor XIII at physiological ratio of Glu-plasminogen, tissue activator, fibrin and alpha-2-antiplasmin. Thus we have shown that fibrinogen/fibrin binds alpha-2-antiplasmin independent of the factor XIII. Binding sites of the inhibitor are localized in D-fragment of fibrinogen and/or fibrin D-dimer. Alpha-2-antiplasmin inhibits the Glu-plasminogen activation by tissue activator on fibrin.  相似文献   

6.
A specific determination of fibrin degradation product (FbDP) is essential for the monitoring of thrombolytic therapy. In patients under thrombolytic therapy, even with tpA (tissue type plasminogen activator) fibrinogen is degraded, and fragment D derived from fibrinogen degradation, is evidenced in the plasma of treated patients. In order to determine specifically the FbDP, even in the presence of fragment D, we take into account the fact that FbDP are complexes such as DDE complex. Therefore a new Elisa technique is proposed. FbDP and fragment D are captured from plasma by immobilized anti D neo monoclonal antibody which recognizes an epitope accessible on fragment D but does not react with undegraded fibrinogen. DDE complexes are then detected specifically using a peroxidase-labelled anti E antibody. The advantage of this technique is discussed in this paper.  相似文献   

7.
The effect of tissue plasminogen activator (TPA) or urokinase on the specific binding of human Glu-plasminogen to fibrin I formed in plasma by clotting with Reptilase was studied using 125I-plasminogen and 131I-fibrinogen. In the absence of TPA, small amounts of plasminogen were bound to fibrin I. TPA induced binding of plasminogen to plasma fibrin I that was dependent upon the concentrations of TPA and plasminogen as well as upon the time of incubation. Plasminogen binding occurred in association with fibrin clot lysis and the formation in the clot supernatant of alpha 2-plasmin inhibitor-plasmin complexes. Urokinase also induced binding of plasminogen to plasma fibrin I that was concentration- and time-dependent. The molecular form of plasminogen bound to the fibrin I plasma clot was identified as Glu-plasminogen by dodecyl sulfate-polyacrylamide gel electrophoresis and by fast performance liquid chromatography. Further studies demonstrated that fibrin I formed from fibrinogen that had been progressively degraded by plasmin-bound Glu-plasminogen. The mole ratio of plasminogen bound increased with the time of plasmin digestion. Glu-plasminogen did not bind to fibrin I formed from fibrinogen progressively digested by human leukocyte elastase, thereby demonstrating the specificity of plasmin. These studies demonstrate that plasminogen activators regulate the binding of Glu-plasminogen to fibrin I by catalyzing plasmin-mediated modifications in the fibrin substrate.  相似文献   

8.
Glu- and Lys-plasminogen interaction with native and desAABB-fibrin obtained from fibrinogen partially hydrolyzed by plasmin was studied. It was found that native fibrin adsorbs 6 times more Lys-plasminogen as compared to the native form of the proenzyme. The range of the Lys-plasminogen binding does not change, if part of the fibrinogen molecules hydrolyze down to X-fragments. At the same time, the appearance in the system of 1% Xi-fragments leads to a 6-fold increase in the Glu-plasminogen binding. The amount of adsorbed Glu-plasminogen reaches the level of Lys-plasminogen adsorption both in the native and partially hydrolyzed fibrin. It was found that kringle K 1-3 or 6-aminohexanoic acid at saturating for high-affinity lysine-binding sites concentrations do not influence the Glu-plasminogen binding to native fibrin but inhibit it when the partially purified form is used. It is assumed that the manyfold increase of the Glu-plasminogen binding to partially hydrolyzed fibrin is due to the alteration of the proenzyme conformation at the initial steps of fibrin hydrolysis during the formation of Xi fragments.  相似文献   

9.
The molecular makeup of soluble fibrin complexes was studied by gel exclusion chromatography using radio-labelling to characterize individual components in protein mixtures. Products of limited plasmin degradation of fibrinogen and mixtures of fibrinogen and "early" fibrinogen digests formed high molecular weight soluble fibrin complexes upon incubation with thrombin. Purified, nonclottable fragment Y did not incorporate into soluble fibrin complexes, nor could we demonstrate incorporation of fragments D and E as previously described from our laboratory. Thus, under the conditions of these experiments, soluble fibrin complexes have two identifiable components, fibrin monomer and clottable fragment X monomer, although incorporation of native fibrinogen or fragment X unreacted by thrombin into soluble fibrin complexes cannot be excluded. Individual fractions of thrombin-treated early fibrinogen digests isolated by agarose gel chromatography were treated with protamine sulfate at 37 degrees C resulting in precipitation-gelation of greater than 90 per cent of high molecular weight soluble fibrin complexes; whereas, less than 10 per cent of lower molecular weight fibrinogen degradation products precipitated by protamine sulfate. These findings do not support the widely held concept that soluble fibrin complexes incorporate nonclottable degradation products of fibrinogen proteolysis, nor do they support the notion that the so-called paracoagulation reaction induced by protamine sulfate results from the splitting of complexes between fibrin monomer and nonclottable fibrinogen degradation products.  相似文献   

10.
Interaction of fibrinogen and its derivatives with fibrin   总被引:1,自引:0,他引:1  
The binding between complementary polymerization sites of fibrin monomers plays an essential role in the formation of the fibrin clot. One set of polymerization sites involved in the interaction of fibrin monomers is believed to pre-exist in fibrinogen, while the complementary set of binding sites is exposed after the cleavage of fibrinopeptides from fibrinogen. The polymerization sites present in fibrinogen and its derivatives mediate their binding to fibrin. Although the binding of fibrinogen and its derivatives to fibrin have been qualitatively studied, there has been no systematic, quantitative investigation of their interaction with forming or preformed clots. In the present study, the binding of fibrinogen and fragments DD, D1, and E1 was measured using a sonicated suspension of plasminogen- and thrombin-free human cross-linked fibrin as a model of a preformed clot. Dissociation constants of 0.056, 0.19, and 2.44 microM, and the number of binding sites corresponding to 0.10, 0.21, and 0.13/fibrin monomer unit of fibrin polymer were found for fibrinogen, fragment DD, and fragment D1, respectively. Fragment E1 did not bind to sonicated noncross-linked or cross-linked fibrin suspensions. However, it was bound to forming fibrin clots as well as to fibrin-Celite, suggesting that the binding sites on fibrin involved in the interaction with fragment E1 may have been altered upon sonication. Affinity chromatography of various fibrinogen derivatives on a fibrin-Celite column showed that only part of the bound fragment DD was displaced by arginine, whereas fragments D1 and E1 were completely eluted under the same conditions. The results indicate that interaction of fibrinogen with the preformed fibrin clots is characterized by affinity in the nanomolar range and that binding between fibrin monomers, in the process of clot formation, could be characterized by even a higher affinity.  相似文献   

11.
Untreated Staphylococcus aureus cells, strain Cowan I, specifically bound 125I-Glu-plasminogen. The binding was inhibited by both unlabeled Glu-plasminogen and Glu-plasmin. The Lys form of plasminogen, which lacks the 8-kDa amino-terminal activation peptide, was approximately 100-fold more effective than the Glu form in competing with the binding of 125I-labeled Glu-plasminogen. This suggests an increase in binding affinity upon removal of the activation peptide. Fibronectin, fibrinogen and IgG, plasma components known to bind to the staphylococcal surface, did not significantly interfere with the binding. The competing activity in plasma was abolished by specifically absorbing plasminogen from the plasma sample. L-Lysine and a fragment of plasminogen containing three of the first five protein attachment domains present in the molecule (kringle structures) also competed with plasminogen for binding suggesting that the lysine-binding sites of plasminogen were involved in its interaction with staphylococci. Scatchard analysis revealed high- and low-affinity binding sites. Kd and the number of high-affinity binding sites were 1.7 nM and 780 binding sites/bacterial cell, respectively. 125I-Glu-plasminogen bound to staphylococcal surface was converted to plasmin by tissue-type plasminogen activator. The conversion took place also in the presence of plasma. If the conversion was carried out in the absence of low-molecular-mass plasmin inhibitors such as aprotinin, the bound Glu-plasmin was further converted to Lys-plasmin. The surface-bound plasmin was enzymically active, as judged by digestion of the synthetic substrate, S-2251. The plasminogen conversion shown by the present experiments not only leads to the surface-bound plasmin but seems to considerably increase the affinity of plasmin for its binding site. This may represent a physiologically relevant method for a bacterial cell to retain surface-bound active plasmin which is also protected from its soluble plasma inhibitors. This novel mechanism for staphylococci to adopt surface-bound proteolytic activity, without the interference of plasma components, may have some role in the tissue penetration and invasion of microbes during infection.  相似文献   

12.
The interaction of fibrinogen with the mannose-specific lectins concanavalin A (ConA), its acetyl derivative (Ac-ConA) and Lens culinaris agglutinin (LcH) was studied. Both ConA and LcH interact specifically with individual fibrinogen B beta and gamma chains and with denatured fragments D and E. However, analysis of the binding data shows that four moles of Ac-ConA are bound per mole of fibrinogen with two sets of binding sites (Kd1 = 2.4 microM and Kd2 = 16.6 microM; n1 = n2 = 2) while only two moles of LcH are bound per mole of fibrinogen (Kd = 2.6 microM). Ultracentrifugation studies are also in agreement with the presence in the fibrinogen molecule of two and four binding sites for LcH and Ac-ConA, respectively. No aggregates of fibrinogen formed through LcH or Ac-ConA linkages are observed. The use of a crosslinking reagent and ultracentrifugal analysis of the lectin-fibrinogen fragments D1 and E complexes indicated that ConA, as well as Ac-ConA, interact with both fragments D and E while LcH interacts only with fragment D. Furthermore, the binding of ConA to both D and E domains in the intact fibrinogen molecule is clearly demonstrated by using a bifunctional reagent. The bivalent character of ConA tetramers may be misinterpreted as a lack of accessibility of the lectin to two of the four carbohydrate chains of fibrinogen. The differential binding of LcH and ConA to the carbohydrate chains of fibrinogen can be related to a different exposure of the oligosaccharide in D and E fragments and domains and to the different requirements of both lectins for their binding to glycoproteins.  相似文献   

13.
Glycoprotein IIb (GPIIb) and glycoprotein IIIa (GPIIIa) form a macromolecular complex on the activated platelet surface which contains the fibrinogen-binding site necessary for normal platelet aggregation. To identify the specific region of the fibrinogen molecule responsible for its interaction with the GPIIb-GPIIIa complex, purified fragment D1 (Mr = 100,000) and fragment E (Mr = 50,000) were prepared from plasmin digests of purified human fibrinogen. In addition, the polypeptide chain subunits A alpha, B beta, and gamma of fibrinogen were prepared. Using an enzyme-linked immunosorbent assay we have demonstrated that isolated fragment D1 in a solid phase system forms a complex with a mixture of GPIIb and GPIIIa. The binding of the GPIIb-GPIIIa mixture to fragment D1-coated plates reached saturation at 8 nM and to fibrinogen-coated plates at 24 nM. Isolated A alpha, B beta, and gamma chains were not reactive with added glycoproteins. Fragment E coated directly on plastic plates or immobilized on antibody-coated plastic plates did not form a complex with GPIIb-GPIIIa. Only fluid phase fibrinogen and fragment D1 but not fragment E were inhibitory toward formation of a complex between solid phase fibrinogen and GPIIb-GPIIIa. Isolated A alpha, B beta, and gamma chains at concentrations equivalent to fluid phase fibrinogen were inactive. Binding of fragment D1 but not fragment E to the GPIIb-GPIIIa complex was also demonstrated by rocket immunoelectrophoresis of the membrane glycoprotein mixture through a gel containing the individual fragments and subsequent autoradiography of the complex following exposure to 125I-anti-fibrinogen. These observations with isolated platelet membrane glycoproteins provide strong evidence that each of the D domains of the fibrinogen molecule interacts directly with the GPIIb-GPIIIa complex on the activated platelet surface, thus allowing formation of a tertiary molecular "bridge" across the surface of two adjacent activated platelets.  相似文献   

14.
In this study we have produced for the first time a native fibrinogen copolymer with a fragment of fibrin E. and the molecular mechanism of its formation was studied by different physicochemical methods. Based on the data of angular dependency of the Debay scattering factor, the average molecular mass, coefficients of translational diffusion and the intrinsic viscosity it was shown that the primary interaction comprised the "end-to-end" fibrinogen dimerization through the D-D contacts with the following fragment E specific binding. It resulted in the stable three-domain D-E-D knot formation. The structural flexibility of the copolymer determines the tendency to their folding and the strong intermolecular hydrodynamic interaction indicates the structural compactization. This correlates as we think, with the presence of the centers of lateral binding in the fibrinogen molecule. Single-strand copolymers aggregate when they reach their critical sweep length resulting in microgel formation with the raise of the molecular mass. We came to the conclusion that fibrinogen molecules are capable to associate due to the stable native conformation shift into the active state, thus demasking the reaction groups in the D-domain. Possible reasons for the lack of fibrinogen heteropolymer rigidity characteristic for the fibrin polymers are discussed.  相似文献   

15.
The interaction of Lys-plasminogen and its fragments with fibrinogen fragment E was studied by equilibrium affinity binding. A quantitative analysis of binding parameters revealed two types of binding sites responsible for Lys-plasminogen interaction with the immobilized fragment E, i.e., with a high (Kd = 1.5 x 10(-6) M) and low (Kd = 82 x 10(-6) M) affinity ones. Among plasminogen fragments, only miniplasminogen and KI-3 bound immobilized fragment E and were eluted by epsilon-aminocaproic acid. Hence, two lysine binding sites may be involved in the binding of Lys-plasminogen to fragment E; they are localized in the KI-3 and K5 kringle structures.  相似文献   

16.
The interaction of fibronectin with fibrin and its incorporation into fibrin clots are thought to be important for the formation of a provisional matrix that promotes cell adhesion and migration during wound healing. However, it is still unclear whether fibronectin interacts with both fibrin and fibrinogen or fibrin only and whether fibronectin binds exclusively to the fibrin(ogen) alphaC domains. To address these questions, we studied the interaction of fibronectin with fibrinogen, fibrin, and their proteolytic and recombinant fragments. In both ELISA and surface plasmon resonance (SPR) experiments, immobilized fibrinogen did not bind fibronectin at all, but after conversion to fibrin, it bound fibronectin with high affinity. To test which regions of fibrin are involved in this binding, we studied the interaction of fibronectin with the fibrin-derived D-D:E(1) complex and a recombinant alphaC fragment (residues Aalpha221-610) corresponding to the alphaC domain that together encompass the whole fibrin(ogen) molecule. In ELISA, when fibronectin was added to the immobilized D-D:E(1) complex or the immobilized alphaC fragment, only the latter exhibited binding. Likewise, when fibronectin was immobilized and the complex or the alphaC fragment was added, only the latter was observed to bind. The selective interaction between fibronectin and the alphaC fragment was confirmed by SPR. The fibronectin-binding site was further localized to the NH(2) terminal connector region of the alphaC domain since in ELISA, the immobilized recombinant Aalpha221-391 sub-fragment bound fibronectin well while the immobilized recombinant Aalpha392-610 sub-fragment exhibited no binding. This finding was confirmed by ligand blotting analysis. Thus, the results provide direct evidence for the existence of a cryptic high-affinity fibronectin-binding site in the Aalpha221-391 region of the fibrinogen alphaC domain that is not accessible in fibrinogen but becomes exposed in fibrin.  相似文献   

17.
Binding and processing of fibrinogen by rabbit hepatocytes   总被引:1,自引:0,他引:1  
We describe a specific fibrinogen-hepatocyte interaction. Rabbit 125I-labeled fibrinogen (125I-FGN) was incubated at 4 degrees C with suspensions of rabbit hepatocytes (approximately 1 X 10(6) cells/ml). Bound ligand was separated from free by centrifugation of cells through oil and quantitated by gamma-scintillation counting. Specific binding, determined by subtraction of nonspecific binding in the presence of 8 mM EDTA from total binding in the presence of 2 mM CaCl2, required 3 h to plateau and represented approximately 70% of total binding. Specific binding was calcium-dependent and was negligible in buffer containing 2 mM MgCl2. Half-maximal saturation occurred at approximately 30 nM 125I-FGN with approximately 480,000 molecules/cell at saturation. Dilution experiments revealed comparable affinities for labeled and unlabeled fibrinogen. Total binding was irreversible as determined by addition of excess unlabeled fibrinogen or EDTA. Specific binding of 25 nM 125I-FGN was inhibited, in a concentration-dependent fashion, by unlabeled fibrinogen or fibrinogen fragment D95 (Mr = 95,000), but not by fibrinogen fragment E or Arg-Gly-Asp-containing peptides. Unlabeled fibrinogen (3.1 microM) completely abolished specific binding, whereas greater than 80% inhibition was achieved with 10 microM fragment D95. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography of 125I-FGN bound in the presence of calcium demonstrated disappearance of A alpha chains with formation of products of Mr greater than 200,000; EDTA or unlabeled fibrinogen prevented fibrinogen processing. These data describe a unique fibrinogen-hepatocyte interaction which differs considerably from the platelet-fibrinogen interaction, especially with regard to the processing of the fibrinogen molecule.  相似文献   

18.
Plasminogen preparation from donor blood and fibrinolytically active blood plasma from humans after sudden death were obtained using affinity chromatography on Lysin-sepharose 4B. The plasminogen preparation from donor blood was shown to be highly purified native plasminogen (Glu-plasminogen). The preparation containing activated plasminogen (Lys-plasminogen), plasmin, plasminogen activator, alpha 2-macroglobulin, alpha 1-antitrypsin, fibrin/fibrinogen was obtained from the blood plasma of humans after sudden death. The appearance of proteins lacking biological specificity to lysin-sepharose in the plasminogen preparation shows the ability of activated plasminogen and plasmin to form complexes with these proteins and demonstrates the retention of the functional activity in lysin-binding regions on their molecules. Monospecific sera to the isolated preparations were obtained, demonstrating the presence of the same immunochemical determinants in native and activated plasminogen.  相似文献   

19.
Interaction of plasminogen K 1-3 and K 4 fragments containing lysine binding sites with fibrinogen and its fragments has been investigated. It has been established that K 1-3 fragment binds to fibrinogen and its E and DL fragments. K 4 fragment does not bind to E and DL fragments, but it interacts with fibrinogen. K 4 fragment does not interact with early fibrinogen proteolysis X2 fragment which differs from the native molecule of fibrinogen in the alpha C domain absence. The results obtained indicate that lysine binding sites located at plasminogen K 1-3 and K 4 fragments correspond to different fibrinogen molecule centres. The centre complementary to K 4 fragment lysine binding sites could be located at the fibrinogen alpha C domain.  相似文献   

20.
Sun Z  Liu JN 《Proteins》2005,61(4):870-877
The charge of Lys300(c143) located within a flexible loop(297-313) of sc-uPA has been identified as an important determinant for its high intrinsic activity. Mutations affecting the flexibility of the loop also modulate the intrinsic activity. Glu-plasminogen activation by sc-uPA is strongly promoted by fibrin fragment E but not fibrin fragment D-dimer, whereas plasminogen activation by t-PA is strongly promoted by fragment D-dimer but not fragment E. To further investigate the effect of conformation changes in the flexible loop on catalytic properties of sc-uPA, cassette mutations at Pro309(c152) were made and characterized. It was found that the activation of Pro309(c152) mutants by Lys-plasmin was only moderately affected. In contrast, the intrinsic and two-chain activities of Pro309(c152) mutants against S2444 were both significantly decreased. The two-chain activities of these mutants against Glu-plasminogen were also reduced in a range of 1.1- to 127-fold. The mutations of Pro309(c152) to Trp/Phe and Arg/Asp more significantly affected both intrinsic and two-chain activities, while only a moderate decrease in activity was found with mutations to Ala/Ser/Thr. In contrast to wild-type sc-uPA, plasminogen activation by Pro309(c152) mutants was found to be promoted by both fibrin fragment E and D-dimer. In the presence of 2.0 microM D-dimer, plasminogen activation by mutant Pro309(c152) --> His was promoted by 22-fold, while only 2.0-fold promotion was found with mutant Pro309(c152) --> Gly. In conclusion, these findings demonstrated that conformation changes in the flexible loop of sc-uPA not only affect its intrinsic and two-chain activity, but also extend its promotion of plasminogen activation by fragment E to D-dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号