首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to determine whether chronic exposure to radiofrequency (RF) radiation from cellular phones increased the incidence of spontaneous tumors in F344 rats. Eighty male and 80 female rats were randomly placed in each of three irradiation groups. The sham group received no irradiation; the Frequency Division Multiple Access (FDMA) group was exposed to 835.62 MHz FDMA RF radiation; and the Code Division Multiple Access (CDMA) group was exposed to 847.74 MHz CDMA RF radiation. Rats were irradiated 4 h per day, 5 days per week over 2 years. The nominal time-averaged specific absorption rate (SAR) in the brain for the irradiated animals was 0.85 +/- 0.34 W/kg (mean +/- SD) per time-averaged watt of antenna power. Antennas were driven with a time-averaged power of 1.50 +/- 0.25 W (range). That is, the nominal time-averaged brain SAR was 1.3 +/- 0.5 W/kg (mean +/- SD). This number was an average from several measurement locations inside the brain, and it takes into account changes in animal weight and head position during irradiation. All major organs were evaluated grossly and histologically. The number of tumors, tumor types and incidence of hyperplasia for each organ were recorded. There were no significant differences among final body weights or survival days for either males or females in any group. No significant differences were found between treated and sham-exposed animals for any tumor in any organ. We conclude that chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA RF radiation had no significant effect on the incidence of spontaneous tumors in F344 rats.  相似文献   

2.
This study sought to clarify the effects of exposure to electromagnetic waves (EMW) used in cellular phones on learning and memory processes. Sprague-Dawley rats were exposed for either 1 h daily for 4 days or for 4 weeks to a pulsed 1439 MHz time division multiple access (TDMA) field in a carousel type exposure system. At the brain, average specific absorption rate (SAR) was 7.5 W/kg, and the whole body average SAR was 1.7 W/kg. Other subjects were exposed at the brain average SAR of 25 W/kg and the whole body average SAR of 5.7 W/kg for 45 min daily for 4 days. Learning and memory were evaluated by reversal learning in a food rewarded T-maze, in which rats learned the location of food (right or left) by using environmental cues. The animals exposed to EMW with the brain average SAR of 25 W/kg for 4 days showed statistically significant decreases in the transition in number of correct choices in the reversal task, compared to sham exposed or cage control animals. However, rats exposed to the brain average SAR of 7.5 W/kg for either 4 days or for 4 weeks showed no T-maze performance impairments. Intraperitoneal temperatures, as measured by a fiber optic thermometer, increased in the rats exposed to the brain average SAR of 25 W/kg but remained the same for the brain average SAR of 7.5 W/kg. The SAR of a standard cellular phone is restricted to a maximum of 2 W/kg averaged over 10 g tissue. These results suggest that the exposure to a TDMA field at levels about four times stronger than emitted by cellular phones does not affect the learning and memory processes when there are no thermal effects.  相似文献   

3.
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.  相似文献   

4.
Nonuniform heating may result from microwave (MW) irradiation of tissues and is therefore important to investigate in terms of health and safety issues. Hypothalamic (Thyp), cortical (Tctx), tympanic (Tty), and rectal (Tre) temperatures were measured in rats exposed in the far field, k-polarization (i.e., head pointed toward the transmitter horn and E-field in vertical direction) to two power densities of 2.06 GHz irradiation. The high-power density (HPM) was 1700 mW/cm2 [specific absorption rate (SAR): hypothalamus 1224 W/kg; cortex 493 W/kg]; the low-power density (LPM) was 170 mW/cm2 (SAR: hypothalamus 122.4 W/kg; cortex 49.3 W/kg). The increase (rate-of-rise, in °C/s) in Thyp was significantly greater than those in Tctx or Tre when rats were exposed to HPM. LPM produced more homogeneous heating. Quantitatively similar results were observed whether rats were implanted with probes in two brain sites or a single probe in one or the other of the two sites. The qualitative difference between regional brain heating was maintained during unrestrained exposure to HPM in the h-polarization (i.e., body parallel to magnetic field). To compare the temperature changes during MW irradiation with those produced by other modalities of heating, rats were immersed in warm water (44 °C, WWI); exposed to a warm ambient environment (50 °C, WSED); or exercised on a treadmill (17 m/min 8% grade) in a warm ambient environment (35 °C, WEX). WWI produced uniform heating in the regions measured. Similar rates-of-rise occurred among regions following WSED or WEX, thus maintaining the pre-existing gradient between Thyp and Tctx. These data indicate that HPM produced a 2–2.5-fold difference in the rate-of-heating within brain regions that were separated by only a few millimeters. In contrast, more homogeneous heating was recorded during LPM or nonmicrowave modalities of heating. Bioelectromagnetics 19:341–353, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
To analyze possible effects of microwaves on gene expression, mice were exposed to global system for mobile communication (GSM) 1800 MHz signal for 1 h at a whole body SAR of 1.1 W/kg. Gene expression was studied in the whole brain, where the average SAR was 0.2 W/kg, by expression microarrays containing over 22,600 probe sets. Comparison of data from sham and exposed animals showed no significant difference in gene expression modulation. However, when less stringent constraints were adopted to analyze microarray results, 75 genes were found to be modulated following exposure. Forty-two probes showed fold changes ranging from 1.5 to 2.8, whereas 33 were down-regulated from 0.67- to 0.29-fold changes, but these differences in gene expression were not confirmed by real-time PCR. Under these specific limited conditions, no consistent indication of gene expression modulation in whole mouse brain was found associated to GSM 1800 MHz exposure.  相似文献   

6.
In utero exposure to microwave radiation and rat brain development   总被引:1,自引:0,他引:1  
Timed-pregnancy rats were exposed in a circular waveguide system starting on day 2 of gestation. The system operated at 2,450 MHz (pulsed waves; 8 microseconds PW; 830 pps). Specific absorption rate (SAR) was maintained at 0.4 W/kg by increasing the input power as the animals grew in size. On day 18 of gestation the dams were removed from the waveguide cages and euthanized; the fetuses were removed and weighed. Fetal brains were excised and weighed, and brain RNA, DNA and protein were determined. Values for measured parameters of the radiated fetuses did not differ significantly from those of sham-exposed fetuses. A regression of brain weight on body weight showed no micrencephalous fetuses in the radiation group when using as a criterion a regression line based on two standard errors of the estimate of the sham-exposed group. In addition, metrics derived from brain DNA (ie, cell number and cell size) showed no significant differences when radiation was compared to sham exposure. We conclude that 2,450-MHz microwave radiation, at an SAR of 0.4 W/kg, did not produce significant alterations in brain organogenesis.  相似文献   

7.
The purpose of this study was to determine whether long-term exposure to a 1.6 GHz radiofrequency (RF) field would affect the incidence of cancer in Fischer 344 rats. Thirty-six timed-pregnant rats were randomly assigned to each of three treatment groups: two groups exposed to a far-field RF Iridium signal and a third group that was sham exposed. Exposures were chosen such that the brain SAR in the fetuses was 0.16 W/kg. Whole-body far-field exposures were initiated at 19 days of gestation and continued at 2 h/day, 7 days/week for dams and pups after parturition until weaning (approximately 23 days old). The offspring (700) of these dams were selected, 90 males and 90 females for each near-field treatment group, with SAR levels in the brain calculated to be as follows: (1) 1.6 W/kg, (2) 0.16 W/kg and (3) near-field sham controls, with an additional 80 males and 80 females as shelf controls. Confining, head-first, near-field exposures of 2 h/day, 5 days/week were initiated when the offspring were 36 +/- 1 days old and continued until the rats were 2 years old. No statistically significant differences were observed among treatment groups for number of live pups/litter, survival index, and weaning weights, nor were there differences in clinical signs or neoplastic lesions among the treatment groups. The percentages of animals surviving at the end of the near-field exposure were not different among the male groups. In females a significant decrease in survival time was observed for the cage control group.  相似文献   

8.
The so-called carousel setup has been widely utilized for testing the hypotheses of adverse health effects on the central nervous system (CNS) due to mobile phone exposures in the frequency bands 800-900 MHz. The objectives of this article were to analyze the suitability of the setup for the upper mobile frequency range, i.e., 1.4-2 GHz, and to conduct a detailed experimental and numerical dosimetry for the setup at the IRIDIUM frequency band of 1.62 GHz. The setup consists of a plastic base on which ten rats, restrained in radially positioned tubes, are exposed to the electromagnetic field emanating from a sleeved dipole antenna at the center. Latest generation miniaturized dosimetric E field and temperature probes were used to measure the specific absorption rate (SAR) inside the brain of three rat cadavers of the Lewis strain and two rat cadavers of the Fisher 344 strain. A numerical analysis was conducted on the basis of three numerical rat phantoms with voxel sizes between 1.5 and 0.125 mm3 that are based on high resolution MRI scans of a 300 g male Wistar rat and a 370 g male Sprague-Dawley rat. The average of the assessed SAR values in the brain was 2.8 mW/g per W antenna input power for adult rats with masses between 220 and 350 g and 5.3 mW/g per W antenna input power for a juvenile rat with a mass of 95 g. The strong increase of the SAR in the brain with decreasing animal size was verified by simulations of the absorption in numerical phantoms scaled to sizes between 100 and 500 g with three different scaling methods. The study also demonstrated that current rat phantom models do not provide sufficient spatial resolution to perform absolute SAR assessment for the brain tissue. The variation of the SAR(brain)(av) due to changes in position was assessed to be in the range from +15% to -30%. A study on the dependence of the performance of the carousel setup on the frequency revealed that efficiency, defined as SAR(brain)(av) per W antenna input power, and the ratio between SAR(brain)(av) and SAR(body)(av) are optimal in the mobile communications frequency range, i.e., 0.8-3 GHz.  相似文献   

9.
Rats were irradiated with circularly polarized, 2,450-MHz pulsed microwaves (2-microseconds pulses, 500 pulses per second [pps]) for 45 min in the cylindrical waveguide system of Guy et al:(Radio Sci 14:63-74, 1979). Immediately after exposure, sodium-dependent high-affinity choline uptake, an indicator of cholinergic activity in neural tissue, was measured in the striatum, frontal cortex, hippocampus, and hypothalamus. The power density was set to give average whole-body specific absorption rates (SAR) of 0.3, 0.45, 0.6, 0.75, 0.9, or 1.2 W/kg to study the dose-response relationship between the rate of microwave energy absorption and cholinergic activity in the different areas of the brain. Decrease in choline uptake was observed in the striatum at a SAR of 0.75 W/kg and above, whereas for the frontal cortex and hippocampus, decreases in choline uptake were observed at a SAR of 0.45 W/kg and above. No significant effect was observed in the hypothalamus at the irradiation power densities studied. The probit analysis was used to determine the SAR50 in each brain area, i.e., the SAR at which 50% of maximum response was elicited. SAR50 values for the striatum, frontal cortex, and hippocampus were 0.65, 0.38, and 0.44 W/kg, respectively.  相似文献   

10.
The present study was undertaken to investigate the thermal adjustments of squirrel monkeys exposed in a cold environment to relatively high energy levels of microwave fields. The animals (Saimiri sciureus) were equilibrated for 90 min to a cool environment (Ta = 20 degrees C) to elevate metabolic heat production (M). They were then exposed for brief (10-min) or long (30-min) periods to 2,450-MHz continuous-wave microwaves. Power densities (MPD) were 10, 14, 19, and 25 mW/cm2 during brief exposures and 30, 35, 40, and 45 mW/cm2 during long exposures (rate of energy absorption: SAR = 0.15 [W/kg]/[mW/cm2]). Individual exposures were separated by enough time to allow physiological variables to return to baseline levels. The results confirm that each microwave exposure induced a rapid decrease in M. In a 20 degree C environment, the power density of a 10-min exposure required to lower M to approximate the resting level was 35 mW/cm2 (SAR = 5.3 W/kg). During the long exposures, 20 min was needed to decrease M to its lowest level. Cessation of irradiation was associated with persistence of low levels of M for periods that depended on the power density of the preceding microwave exposure. Vasodilation, as indexed by changes in local skin temperature, occurred at a high rate of energy absorption (SAR = 4.5 W/kg) and was sufficient to prevent a dramatic increase in storage of thermal energy by the body; vasoconstriction was reinstated after termination of irradiation. Patterns of thermophysiological responses confirm the influence both of peripheral and of internal inputs to thermoregulation in squirrel monkeys exposed to microwaves in a cool environment.  相似文献   

11.
We investigated whether exposure of rat brain to microwaves (MWs) of global system for mobile communication (GSM) induces DNA breaks, changes in chromatin conformation and in gene expression. An exposure installation was used based on a test mobile phone employing a GSM signal at 915 MHz, all standard modulations included, output power level in pulses 2 W, specific absorption rate (SAR) 0.4 mW/g. Rats were exposed or sham exposed to MWs during 2 h. After exposure, cell suspensions were prepared from brain samples, as well as from spleen and thymus. For analysis of gene expression patterns, total RNA was extracted from cerebellum. Changes in chromatin conformation, which are indicative of stress response and genotoxic effects, were measured by the method of anomalous viscosity time dependencies (AVTD). DNA double strand breaks (DSBs) were analyzed by pulsed-field gel electrophoresis (PFGE). Effects of MW exposure were observed on neither conformation of chromatin nor DNA DSBs. Gene expression profiles were obtained by Affymetrix U34 GeneChips representing 8800 rat genes and analyzed with the Affymetrix Microarray Suite (MAS) 5.0 software. In cerebellum from all exposed animals, 11 genes were upregulated in a range of 1.34-2.74 fold and one gene was downregulated 0.48-fold (P < .0025). The induced genes encode proteins with diverse functions including neurotransmitter regulation, blood-brain barrier (BBB), and melatonin production. The data shows that GSM MWs at 915 MHz did not induce PFGE-detectable DNA double stranded breaks or changes in chromatin conformation, but affected expression of genes in rat brain cells.  相似文献   

12.
《Free radical research》2013,47(5):511-525
Abstract

Electromagnetic radiations are reported to produce long-term and short-term biological effects, which are of great concern to human health due to increasing use of devices emitting EMR especially microwave (MW) radiation in our daily life. In view of the unavoidable use of MW emitting devices (microwaves oven, mobile phones, Wi-Fi, etc.) and their harmful effects on biological system, it was thought worthwhile to investigate the long-term effects of low-level MW irradiation on the reproductive function of male Swiss strain mice and its mechanism of action. Twelve-week-old mice were exposed to non-thermal low-level 2.45-GHz MW radiation (CW for 2 h/day for 30 days, power density = 0.029812 mW/cm2 and SAR = 0.018 W/Kg). Sperm count and sperm viability test were done as well as vital organs were processed to study different stress parameters. Plasma was used for testosterone and testis for 3β HSD assay. Immunohistochemistry of 3β HSD and nitric oxide synthase (i-NOS) was also performed in testis. We observed that MW irradiation induced a significant decrease in sperm count and sperm viability along with the decrease in seminiferous tubule diameter and degeneration of seminiferous tubules. Reduction in testicular 3β HSD activity and plasma testosterone levels was also noted in the exposed group of mice. Increased expression of testicular i-NOS was observed in the MW-irradiated group of mice. Further, these adverse reproductive effects suggest that chronic exposure to nonionizing MW radiation may lead to infertility via free radical species-mediated pathway.  相似文献   

13.
Male CBA/J mice were administered heat loads of 0-28 J X g-1 at specific absorption rates (SARs) of either 47 or 93 W X kg-1 by exposure to 2,450-MHz microwave radiation at an ambient temperature of 30 degrees C while evaporative heat loss (EHL) was continuously monitored with dew-point hygrometry. At an SAR of 47 W X kg-1 a threshold heat load of 10.5 J X g-1 had to be exceeded before EHL increased. An approximate doubling of SAR to 93 W X kg-1 reduced the threshold to 5.2 J X g-1. Above threshold the slopes of the regression lines were 1.15 and 0.929 for the low- and high-SAR groups, respectively. Thus the difference in threshold and not slope attributes to the significant increase in EHL when mice are exposed at a high SAR (P less than 0.02). In separate experiments a SAR of 47 W X kg-1 raised the deep body temperature of anesthetized mice at a rate of 0.026 degrees C X s-1, whereas 93 W X kg-1 raised temperature at 0.049 degrees C X s-1. Hence the sensitivity of the EHL mode of heat dissipation is directly proportional to the rate of heat absorption and to the rate of rise in body temperature. These data contradict the notion that mammals have control over whole-body heat exchange only (i.e., thermoregulation) but instead indicate that the EHL system is highly responsive to the rate of heat absorption (i.e., temperature regulation).  相似文献   

14.
This study investigated the effects of microwave radiation on the PVN of the hypothalamus, extracted from rat brains. Expression of c-Fos was used to study the pattern of cellular activation in rats exposed once or repeatedly (ten times in 2 weeks) to 2.45 GHz radiation in a GTEM cell. The power intensities used were 3 and 12 W and the Finite Difference Time Domain calculation was used to determine the specific absorption rate (SAR). High SAR triggered an increase of the c-Fos marker 90 min or 24 h after radiation, and low SAR resulted in c-Fos counts higher than in control rats after 24 h. Repeated irradiation at 3 W increased cellular activation of PVN by more than 100% compared to animals subjected to acute irradiation and to repeated non-radiated repeated session control animals. The results suggest that PVN is sensitive to 2.45 GHz microwave radiation at non-thermal SAR levels.  相似文献   

15.
The goal of study was to evaluate DNA damage in rat's renal, liver and brain cells after in vivo exposure to radiofrequency/microwave (Rf/Mw) radiation of cellular phone frequencies range. To determine DNA damage, a single cell gel electrophoresis/comet assay was used. Wistar rats (male, 12 week old, approximate body weight 350 g) (N = 9) were exposed to the carrier frequency of 915 MHz with Global System Mobile signal modulation (GSM), power density of 2.4 W/m2, whole body average specific absorption rate SAR of 0.6 W/kg. The animals were irradiated for one hour/day, seven days/week during two weeks period. The exposure set-up was Gigahertz Transversal Electromagnetic Mode Cell (GTEM--cell). Sham irradiated controls (N = 9) were apart of the study. The body temperature was measured before and after exposure. There were no differences in temperature in between control and treated animals. Comet assay parameters such as the tail length and tail intensity were evaluated. In comparison with tail length in controls (13.5 +/- 0.7 microm), the tail was slightly elongated in brain cells of irradiated animals (14.0 +/- 0.3 microm). The tail length obtained for liver (14.5 +/- 0.3 microm) and kidney (13.9 +/- 0.5 microm) homogenates notably differs in comparison with matched sham controls (13.6 +/- 0.3 microm) and (12.9 +/- 0.9 microm). Differences in tail intensity between control and exposed animals were not significant. The results of this study suggest that, under the experimental conditions applied, repeated 915 MHz irradiation could be a cause of DNA breaks in renal and liver cells, but not affect the cell genome at the higher extent compared to the basal damage.  相似文献   

16.
The present work describes the effect of low level continuous microwaves (2.45 GHz) on developing rat brain. Some 35-day-old Wistar rats were used for this study. The animals were exposed 2 hr/day for 35 days at a power density of 0.34 mW/cm2 [specific absorption rate (SAR), 0.1 W/kg] in a specially made anechoic chamber. After the exposure, the rats were sacrificed and the brain tissue was dissected out and used for various biochemical assays. A significant increase in calcium ion efflux and ornithine decarboxylase (ODC) activity was observed in the exposed group as compared to the control. Correspondingly, a significant decrease in the calcium-dependent protein kinase activity was observed. These results indicate that this type of radiation affects the membrane bound enzymes, which are associated with cell proliferation and differentiation, thereby pointing out its possible role as a tumor promoter.  相似文献   

17.
Timed-pregnant Fischer 344 rats (from nineteenth day of gestation) and their nursing offspring (until weaning) were exposed to a far-field 1.6 GHz Iridium wireless communication signal for 2 h/day, 7 days/week. Far-field whole-body exposures were conducted with a field intensity of 0.43 mW/cm(2) and whole-body average specific absorption rate (SAR) of 0.036 to 0.077 W/kg (0.10 to 0.22 W/kg in the brain). This was followed by chronic, head-only exposures of male and female offspring to a near-field 1.6 GHz signal for 2 h/day, 5 days/week, over 2 years. Near-field exposures were conducted at an SAR of 0.16 or 1.6 W/kg in the brain. Concurrent sham-exposed and cage control rats were also included in the study. At the end of 2 years, all rats were necropsied. Bone marrow smears were examined for the extent of genotoxicity, assessed from the presence of micronuclei in polychromatic erythrocytes. The results indicated that the incidence of micronuclei/2000 polychromatic erythrocytes were not significantly different between 1.6 GHz-exposed, sham-exposed and cage control rats. The group mean frequencies were 5.6 +/- 1.8 (130 rats exposed to 1.6 GHz at 0.16 W/kg SAR), 5.4 +/- 1.5 (135 rats exposed to 1.6 GHz at 1.6 W/kg SAR), 5.6 +/- 1.7 (119 sham-exposed rats), and 5.8 +/- 1.8 (100 cage control rats). In contrast, positive control rats treated with mitomycin C exhibited significantly elevated incidence of micronuclei/2000 polychromatic erythrocytes in bone marrow cells; the mean frequency was 38.2 +/- 7.0 (five rats). Thus there was no evidence for excess genotoxicity in rats that were chronically exposed to 1.6 GHz compared to sham-exposed and cage controls.  相似文献   

18.
Levels of DNA single-strand break were assayed in brain cells from rats acutely exposed to low-intensity 2450 MHz microwaves using an alkaline microgel electrophoresis method. Immediately after 2 h of exposure to pulsed (2 μs width, 500 pulses/s) microwaves, no significant effect was observed, whereas a dose rate-dependent [0.6 and 1.2 W/kg whole body specific absorption rate (SAR)] increase in DNA single-strand breaks was found in brain cells of rats at 4 h postexposure. Furthermore, in rats exposed for 2 h to continuous-wave 2450 MHz microwaves (SAR 1.2 W/kg), increases in brain cell DNA single-strand breaks were observed immediately as well as at 4 h postexposure. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Vascular proteomics is providing two main types of data: proteins that actively participate in vascular pathophysiological processes and novel protein candidates that can potentially serve as useful clinical biomarkers. Although both types of proteins can be identified by similar proteomic strategies and methods, it is important to clearly distinguish biomarkers from mediators of disease. A particular protein, or group of proteins, may participate in a pathogenic process but not serve as an effective biomarker. Alternatively, a useful biomarker may not mediate pathogenic pathways associated with disease (i.e., C-reactive protein). To date, there are no clear successful examples in which discovery proteomics has led to a novel useful clinical biomarker in cardiovascular diseases. Nevertheless, new sources of biomarkers are being explored (i.e., secretomes, circulating cells, exosomes and microparticles), an increasing number of novel proteins involved in atherogenesis are constantly described, and new technologies and analytical strategies (i.e., quantitative proteomics) are being developed to access low abundant proteins. Therefore, this presages a new era of discovery and a further step in the practical application to diagnosis, prognosis and early action by medical treatment of cardiovascular diseases.  相似文献   

20.
Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study [D'Andrea et al., 1985] reported specific absorption rate (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2,450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2,450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2,450 MHz than temperatures resulting from exposure to 700 MHz. This effect was found for whole-body-averaged SARs as low as 6 W/kg at 360 MHz and 10 W/kg at 2,450 MHz. In contrast, brain temperatures in the anesthetized rats were not different from those measured in the rest of the body following microwave exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号