首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The M2 isoform of pyruvate kinase (PKM2) is a potential antitumor therapeutic target. In this study, we designed and synthesised a series of 2, 3-didithiocarbamate substituted naphthoquinones as PKM2 inhibitors based on the lead compound 3k that we previously reported. Among them, compound 3f (IC50?=?1.05?±?0.17 µM) and 3h (IC50?=?0.96?±?0.18 µM) exhibited potent inhibition of PKM2, and their inhibitory activities are superior to compound 3k (IC50?=?2.95?±?0.53 µM) and the known PKM2 inhibitor shikonin (IC50?=?8.82?±?2.62 µM). In addition, we evaluated in vitro antiproliferative effects of target compounds using MTS assay. Most target compounds exhibited dose-dependent cytotoxicity with IC50 values in nanomolar concentrations against HCT116, MCF7, Hela, H1299 and B16 cells. These small molecule PKM2 inhibitors not only provide candidate compounds for cancer therapy, but also offer a tool to probe the biological effects of PKM2 inhibition on cancer cells.  相似文献   

2.
A series of 5-substitutedbenzylideneamino-2-butylbenzofuran-3-yl-4-methoxyphenyl methanones is synthesized and evaluated for antileishmanial and antioxidant activities. Compounds 4f (IC50?=?52.0?±?0.09?µg/ml), 4h (IC50?=?56.0?±?0.71?µg/ml) and 4l (IC50?=?59.3?±?0.55?µg/ml) were shown significant antileishmanial when compared with standard sodium stibogluconate (IC50?=?490.0?±?1.5?µg/ml). Antioxidant study revealed that compounds 4i (IC50?=?2.44?±?0.47?µg/ml) and 4l (IC50?=?3.69?±?0.44?µg/ml) have shown potent comparable activity when compared with standard ascorbic acid (IC50?=?3.31?±?0.34?µg/ml). Molecular docking study was carried out which replicating results of biological activity in case of initial hits 4f and 4h suggesting that these compounds have a potential to become lead molecules in drug discovery process. In silico ADME study was performed for predicting pharmacokinetic profile of the synthesised antileishmanial agents and expressed good oral drug like behaviour.  相似文献   

3.
Abstract

A series of naphthalene-chalcone derivatives (3a–3t) were prepared and evaluated as tubulin polymerisation inhibitor for the treatment of breast cancer. All compounds were evaluated for their antiproliferative activity against MCF-7 cell line. The most of compounds displayed potent antiproliferative activity. Among them, compound 3a displayed the most potent antiproliferative activity with an IC50 value of 1.42?±?0.15?µM, as compared to cisplatin (IC50?=?15.24?±?1.27?µM). Additionally, the promising compound 3a demonstrated relatively lower cytotoxicity on normal cell line (HEK293) compared to tumour cell line. Furthermore, compound 3a was found to induce significant cell cycle arrest at the G2/M phase and cell apoptosis. Compound 3a displayed potent tubulin polymerisation inhibitory activity with an IC50 value of 8.4?µM, which was slightly more active than the reference compound colchicine (IC50?=?10.6?µM). Molecular docking analysis suggested that 3a interact and bind at the colchicine binding site of the tubulin.  相似文献   

4.
In the present study, some thiazole derivatives were synthesized via the ring closure reaction of 1-[2-(2-oxobenzo[d]thiazol-3(2H)-yl)acetyl]thiosemicarbazide with various phenacyl bromides. The chemical structures of the compounds were elucidated by 1H NMR, 13C NMR and mass spectral data and elemental analyses. Each derivative was evaluated for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) using a modification of Ellman’s spectrophotometric method. The compounds were also investigated for their cytotoxic properties using MTT assay. The most potent AChE inhibitor was found as compound 4e (IC50?=?25.5?±?2.12 µg/mL) followed by compounds 4i (IC50?=?38.50?±?2.12 µg/mL), 4c (IC50?=?58.42?±?3.14 µg/mL) and 4g (IC50?=?68?±?2.12 µg/mL) when compared with eserine (IC50?=?0.025?±?0.01 µg/mL). Effective compounds on AChE exhibited weak inhibition on BuChE (IC50 > 80 µg/mL). MTT assay indicated that the cytotoxic dose (IC50?=?71.67?±?7.63 µg/mL) of compound 4e was higher than its effective dose.  相似文献   

5.
Twenty three fused carbazole–imidazoles 6a–w were designed, synthesized, and screened as new α-glucosidase inhibitors. All the synthesized fused carbazole-imidazoles 6a-w were found to be more active than acarbose (IC50?=?750.0?±?1.5?µM) against yeast α-glucosidase with IC50 values in the range of 74.0?±?0.7–298.3?±?0.9?µM. Kinetic study of the most potent compound 6v demonstrated that this compound is a competitive inhibitor for α-glucosidase (Ki value?=?75?µM). Furthermore, the in silico studies of the most potent compounds 6v and 6o confirmed that these compounds interacted with the key residues in the active site of α-glucosidase.  相似文献   

6.
Anticancer therapeutics with profiles of high potency, low toxicity, and low resistance is of considerable interest. A new series of functionalized spirooxindole linked with 3-acylindole scaffold is reported, starting from chalcones derived from 3-acetyl indole with isatin, and l-4-thiazolidinecarboxylic acid. The reactions proceeded regioselectivity, stereoselectivity, without side products in high yield (71–89%). The new spirooxindole hybrids have been evaluated in vitro for their antiproliferative effects against colon cancer (HCT-116), hepatocellular carcinoma (HepG2) and prostate cancer (PC-3). The selectivity of their activity was evaluated. Some of the synthesized compounds showed considerable anticancer activities. Compound 4k proved to retain a high cytotoxic activity and selectivity against colon cancer cells HCT-116 (IC50 = 7 ± 0.27 µM, SI: 3.7), and HepG2 (IC50 = 5.5 ± 0.2 µM, SI: 4.7) in comparison to (IC50 = 12.6 ± 0.5, SI: 0.4 and 5.5 ± 0.3 µM, SI: 0.9, respectively). Compound 4k was less active (IC50 = 6 ± 0.3 µM, SI: 4.3) than cisplatin (IC50 = 5 ± 0.56 µM, SI: 1.0) but showed greater selectivity towards prostate cancer cells PC-3 in comparison to cisplatin. The details of the binding mode of the active compounds were clarified by molecular docking. Ligand Efficiency (LE) and Ligand Lipophilic Efficiency (LLE) were evaluated and revealed that compound 4k had acceptable value.  相似文献   

7.
New derivatives of phaeosphaeride A (PPA) were synthesized and characterized. Anti-tumor studies were carried out on the U937, HCT-116, PC3, MCF-7, A549, К562, NCI-H929, Jurkat, THP-1, RPMI8228 tumor cell lines, and on the HEF cell line. All the compounds synthesized were found to have better efficacy than PPA towards the tumor cell lines mentioned. Compound 6 (IC50?=?0.59?±?0.27?µM) was observed to be 11 times more active than PPA (IC50?=?6.5?±?0.30?µM) towards the NCI-H929 cell line, with a therapeutic index of 18. Compound 6 was determined to be over half and 16 times more active than etoposide towards the NCI-H929 (IC50?=?0.9?±?0.05?µM) and A549 (IC50?=?100?±?7.0?µM) cell lines, respectively.  相似文献   

8.
Some new structural type inhibitors of urease, i.e. 2,5-disubstituted-1,3,4-oxadiazoles (4a–e) and 4,5-disubstituted-1,2,4-triazole-3-thiones (5a–e) were synthesized in two steps from mandelic acid hydrazides (2a–e) and aryl isothiocyantes. The hydrazides in turn were synthesized from mandelic acid via esterification. Compounds 4a–e and 5a–e were evaluated against jack bean urease. Compounds 4d, 5b, and 5d were found to be more potent, with IC50 values of 16.1?±?0.12?µM, 18.9?±?0.188?µM, and 16.7?±?0.178?µM, respectively, when compared to the standard (thiourea; IC50?=?21.0?±?0.011?µM). These compounds may be subjected to further investigations for the development of antiulcer drugs.  相似文献   

9.
Bioassay-guided fractionation of an extract of Carpha glomerata (Cyperaceae) led to the isolation of seven compounds. Compounds 1 (carphorin A), 3 (carphorin C), 4 (carphorin D), and 5 (carphabene) are new compounds, and compound 2 (8-(3″-hydroxyisoamyl)-naringenin) was isolated for the first time as a natural product. All structures were elucidated based on analyses of their HR-ESIMS and 1D and 2D NMR data. Compounds 1, 2, and 6, which have prenyl or hydroxyprenyl side chains, exhibited antiplasmodial activities with IC50 values of 5.2?±?0.6, 3.4?±?0.4, and 6.7?±?0.8?µM against the drug-resistant Dd2 strain of Plasmodium falciparum. In addition the prenylated stilbene 5 also showed good activity, with IC50 5.8?±?0.7?µM.  相似文献   

10.
Four series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing pyridazinone were designed and synthesized and evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Three compounds (35, 39 and 43) showed more active than positive control Foretinib against A549, HepG2 and MCF-7 cell lines. The most promising compound 43 showed superior activity against A549, HepG2 and MCF-7, with the IC50 values of 0.58?±?0.15?µM, 0.47?±?0.06?µM and 0.74?±?0.12?µM, which were 3.73–5.39-fold more activity than Foretinib, respectively. The experiments of enzyme-based showed that 43 restrain the c-Met selectively, with the IC50 values of 16?nM, which showed equal activity to Foretinib (14?nM) and better than the compound 5 (90?nM). Moreover, AO and Annexin V/PI staining and docking studies were carried out.  相似文献   

11.
Aminopeptidase N (APN/CD13) is one of the essential proteins for tumour invasion, angiogenesis and metastasis as it is over-expressed on the surface of different tumour cells. Based on our previous work that L-isoserine dipeptide derivatives were potent APN inhibitors, we designed and synthesized L-isoserine tripeptide derivatives as APN inhibitors. Among these compounds, one compound 16l (IC50?=?2.51?±?0.2 µM) showed similar inhibitory effect compared with control compound Bestatin (IC50?=?6.25?±?0.4 µM) and it could be used as novel lead compound for the APN inhibitors development as anticancer agents in the future.  相似文献   

12.
A series of 4-bromo-N-(3,5-dimethoxyphenyl)benzamide derivatives were designed and synthesised as novel fibroblast growth factor receptor-1 (FGFR1) inhibitors. We found that one of the most promising compounds, C9, inhibited five non-small cell lung cancer (NSCLC) cell lines with FGFR1 amplification, including NCI-H520, NCI-H1581, NCI-H226, NCI-H460 and NCI-H1703. Moreover, the IC50 values for the compound C9 were 1.36?±?0.27?µM, 1.25?±?0. 23?µM, 2.31?±?0.41?µM, 2.14?±?0.36?µM and 1.85?±?0.32?µM, respectively. The compound C9 arrested the cell cycle at the G2 phase in NSCLC cell lines. The compound C9 also induced cellular apoptosis and inhibited the phosphorylation of FGFR1, PLCγ1 and ERK in a dose-dependent manner. In addition, molecular docking experiments showed that compound C9 binds to FGFR1 to form six hydrogen bonds. Taken together, our data suggested that the compound C9 represented a promising lead compound-targeting FGFR1.  相似文献   

13.
Aminopeptidase N (APN/CD13) over expressed on tumour cells, plays a critical role in tumour invasion, metastasis and tumour angiogenesis. In this article, we described the design, synthesis and preliminary activity studies of novel 3-amino-2-hydroxyl-3-phenylpropanoic acid derivatives as APN inhibitors. The in vitro enzymatic inhibitions on APN from porcine kidney showed that compound 7e had the most potent inhibitory activity against APN with the IC50 value to 1.26?±?0.01 μM, which is better than that of bestatin (IC50?=?2.55?±?0.11 μM). In addition, compound 7e also showed better inhibitory activity against APN on human ovary clear cell carcinoma cell ES-2 than bestatin with the IC50 value to 30.19?±?1.02 μM versus 60.61?±?0.1 μM. Compound 7e could be used as the lead compound in the future for anti-cancer agent research.  相似文献   

14.
Phytochemical investigations were performed on the EtOAc-soluble fraction of the whole plant of the sky flower (Duranta repens) which led to the isolation of the iridoid glycosides 16. Their structures were elucidated by both 1D and 2D NMR spectroscopic analysis. All the compounds showed potent antioxidative scavenging activity in four different tests, with half maximal inhibitory concentration (IC50) values in the range 0.481–0.719?mM against DPPH radicals, 4.07–17.21 µM for the hydroxyl radical (?OH) inhibitory activity test, 43.3–97.37 µM in the total reactive oxygen species (ROS) inhibitory activity test, and 3.39–18.94 µM in the peroxynitrite (ONOO?) scavenging activity test. Duranterectoside A (1) displayed the strongest scavenging potential with IC50 values of (0.481?±?0.06?mM, 4.07?±?0.03, 43.30?±?0.05, 3.39?±?0.02?µM) for the DPPH radicals, ?OH inhibitory activity test, total ROS inhibitory activity test and the ONOO? scavenging activity test, respectively.  相似文献   

15.
Tyramine derivatives 3–27 were synthesized by using conventional and environmental friendly ultrasonic techniques. These derivatives were then evaluated for the first time for their α-glucosidase (Sources: Saccharomyces cerevisiae and mammalian rat-intestinal acetone powder) inhibitory activity by using in vitro mechanism-based biochemical assays. Compounds 7, 14, 20, 21 and 26 were found to be more active (IC50?=?49.7?±?0.4, 318.8?±?3.7, 23.5?±?0.9, 302.0?±?7.3 and 230.7?±?4.0?μM, respectively) than the standard drug, acarbose (IC50?=?840.0?±?1.73?μM (observed) and 780?±?0.028?μM (reported)) against α-glucosidase obtained from Saccharomyces cerevisiae. Kinetic studies were carried out on the most active members of the series in order to determine their mode of inhibition and dissociation constants. Compounds 7, 20 and 26 were found to be the competitive inhibitors of α-glucosidase. These compounds were also screened for their protein antiglycation, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Only compounds 20, 22 and 27 showed weak antiglycation activity with IC50 values 505.27?±?5.95, 581.87?±?5.50 and 440.58?±?2.74?μM, respectively. All the compounds were found to be inactive against DDP-IV enzyme. Inhibition of α-glucosidase, DPP-IV enzymes and glycation of proteins are valid targets for the discovery of antidiabetic drugs. Cytotoxicity of compounds 327 was also evaluated by using mouse fibroblast 3T3 cell lines. All the compounds were found to be noncytotoxic. The current study describes the synthesis α-glucosidase inhibitory activity of derivatives, based on a natural product tyramine template. The compounds reported here may serve as the starting point for the design and development of novel α-glucosidase inhibitors as antidiabetic agents.  相似文献   

16.
Previously we have reported that 25-OCH3-PPD could suppress the reproduction of cancer cells and cause apoptosis without obvious toxicity. Herein, we aimed to enhance its bioactivity by introducing aromatic groups to its dammarane-type skeleton. These synthesized derivatives were tested for their inhibitory activities against five cancer cell lines. Of them, compounds 3a, 14a and 18a had the strongest antiproliferative activities against tumor cells (IC50?<?15?µM, 5-fold to 10-fold increases than 25-OCH3-PPD). Especially compound 14a displayed the most potent activity against DU145, MCF-7 and HepG2 cells (IC50?=?6.7?±?0.8, 4.3?±?0.8 and 5.8?±?0.6?µM, respectively). Structure-activity relationships demonstrated that having aromatic ester at the C3 position could improve the bioactivity. The data provided new insights into exploring novel antiproliferative lead compounds.  相似文献   

17.
The present study was aimed at determining total phenolic and flavonoid contents and studying the antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome and callus, 6-gingerol and 6-shogaol and callus treated with elicitors. Petroleum ether (PE) and chloroform: methanol (1:1, v/v) (CM) extracts were prepared by maceration. Highest total phenolic content was obtained from the CM extract (60.34?±?0.43?mg gallic acid/g) of rhizome while callus showed lower content detected in the CM extract (33.6?±?0.07?mg gallic acid/g). Flavonoids were only detected in rhizome (CM extract 40.25?±?0.21?mg quercetin/g). Both rhizome extracts exhibited good antioxidant activity with higher activity recorded in PE extract (IC50 value 8.29?±?1.73?μg/mL). Callus extracts revealed lower antioxidant activity (IC50 value 1265.49?±?59.9?μg/mL obtained from CM extract). 6-gingerol and 6-shogaol displayed high antioxidant activity in both assays with IC50 4.85?+?0.58DPPH and 5.35?±?0.33ABTS μg/mL for the former and IC50 7.61?±?0.81DPPH and IC50 7.05?±?0.23ABTS μg/mL for the latter. Treatment of callus with elicitors showed significant (p?<?0.05) effects in enhancing phenolic content and related antioxidant activity. The highest significant increase in phenolic content (37% and 34%) and antioxidant activity in DPPH assay (34% and 30%) was observed in callus treated with 100?mg/L yeast extract and 50?mg/L salicylic acid respectively. Therefore, studying the effect of the elicitation of ginger cultured tissues in phenolic accumulation would be of immense importance for pharmacological, cosmetic and agronomic industries.  相似文献   

18.
Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93?±?0.29?µM for Plm II; Ki, 1.99?±?0.05?µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84?±?0.08?µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27?±?0.95?µM for 10f; IC50, 3.11?±?0.65?µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35?±?0.85?µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.  相似文献   

19.
This is the first report of induction of haploid callus with significant antioxidant activity from unpollinated ovary cultures of tea. Out of the five cultivars tested, TV18 gave the highest percentage of callus induction. Within 1 wk of induction, ovules swelled to almost double their original size, and white, friable callus emerged. A high cytokinin/auxin ratio, provided by 8.5 μM benzyl adenine and 4.5 μM 2,4-dichlorophenxyacetic acid, and high-temperature treatment (33°C) for 10 d in the dark promoted maximum callus induction. Callus was maintained on MS medium containing 22.2 μM benzyl adenine and 9.8 μM indolebutyric acid (callus line RM 1) in the light at 25°C. Well-developed tracheids were formed within 4 wk in callus subcultured on MS medium containing 1.8 μM thidiazuron and 5.0 μM 2,3,5-triiodobenzoic acid (line RM 2). Flow cytometric analysis revealed that most cells were haploid. Both RM 1 and RM 2 produced phenolic compounds with significant antioxidant capacity. Phenolic content showed a positive linear correlation with antioxidant activity. The total phenolic content of RM 1 was 3.47?±?0.21 gallic acid equivalents (GAE) mg/g dry weight and that of RM 2 was 2.39?±?0.12 GAE mg/g dry weight. Antioxidant activity was measured using IC50, a measure of inhibitory concentration; a lower IC50 value reflects greater antioxidant activity. The IC50 value of RM 1 was 2,530 μg/ml and that of RM 2 was 3,170 μg/ml. The results suggested that the phenolic compounds contributed significantly to the antioxidant capacity of the in vitro cell lines.  相似文献   

20.
Ceropegia thwaitesii Hook (Asclepiadaceae), an endemic plant species, due to habitat destruction and over exploitation has a very restricted distribution in the Western Ghats of Tamil Nadu, India. The present wrok aimed to determine the chemical composition, the total phenolic (TPC), flavonoid (TFC) and tannin content (TEC), and to assess the antioxidant properties of various extracts of in vivo plants (IVP) and in vitro regenerated plants (IRP) of C. thwaitesii. Some phenolic compounds like gallic acid, cathechol, vanillin and salicylic acid were identified and quantified by HPLC. All the extracts possessed relevant radical scavenging activity on DPPH, Superoxide radical scavenging activity, and Nitric oxide radicals as well as total antioxidant ability. DPPH assay of in vitro methanol stems extracts and ethanol leaves extracts revealed the best antioxidant properties with important IC50 values of 0.248?±?0.45?µg/mL and 0.397?±?0.67?µg/mL, respectively, whereas in vivo chloroform stems extracts showed a lower antioxidant activity (IC50 of 10.99?±?0.24?µg/mL). The IRP methanol extracts of stem and leaves had good inhibitory activity against all tested microorganisms in a dose-dependent manner. These results suggested that in vitro raised plants of C. thwaitesii are an excellent source of antioxidant compounds to be exploited on an industrial level as food additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号